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P AR T II

ASY MP TOTI E 9X P ANXSION XS O F SO0L UTI O N S

OF D FFE9RE9N TI AL EQUjA TIO NS8

CHAPTER 1

SOLUTION OF THE RADIAL DIFPMKNTIAL EQUATION FOR TX WAVES

CONVERGNT SERIES SOLUTIONS A-ROUND X =- 0

We consi~der equationi-o) PART It

d2R~~~x) ----_-____ dR-(x) + ......- vvljRx ( -
-x2  (--+-a(x-+b) dx xc+b2

The origin xmO is a regular singularity of this equation. In order

to obtain convergent series solutions around this point, we follow

the classical method or Frobenius (9 pp. 396-404). First, write

the equation in the f'orm :

Ex2+(a+b)x+ab]x 2 R'(x).cx2 R'(x)+[x 4 +2ax 3.(a wv~vl x-~~)

.(a+b)xv(v.gl)ab] RWx Q=-

Substituting the formal series R~x Z a. 3cxn the equationln=o n

yield*: 5 a xn+7f xsn+c) =0, where:n;;o ni
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-.v:(V+i)(a+b)xmv(v+l)ab = to (n+a)+f1 (nr) x+f 2 (ne)xg+f 3 (n+o) x3+

+f 4 (n,+or) x4 4

The functions appearing in the last expression are defined as
follows i

f 0o(n+or) =abE(n~a) (n+cr-l)-iv(v+i)])=ab(n+a.v) (n~ct-vi-l) (i-i)

t1 (n+00 (a-b) (n~a) (n.cr-1) + a(n+r) -(a~b) v(v+l)(-)

f (n+a) =(n.o) (n+V.-1) +a2.v (V~l)(-3

f( ) a (1-4)

f4(n)=1.(1)

Indicial equation:;

f (d) = ab(a+v)(cr-v-l) =0 (1-6)

with roots:

J.v+i 'V (1-7)

Reccurence formula for the coefficients:

anf' (n+y) +anifi(n+a-l)+oa -- (o-nma f (

+an f (n+0"4) --0 a_ - 0 ,m = ,,,q. . (1-8)

v is a positive parameter, since negative values of v do not yield
modes Independent from the ones corresponding to positive values

of v. We have:

01 92 = 2v+l 19



If 2V+1 is not An integer, the Method yields two independent
ao].utions. InI Particular, we define as Ri(x) and AR2 (X) the
solutions corresponding to 01-v+2. and Q 2 = -VO respectively,
wi t h a 1 L ie.

R! (X) ±xv~+;[1 ann , X x<min( 1Lal JIi)(-

0()= -1l~ ~n] 1-a[ p 1i(la b]) 2v+!lintgr(141-)----

For the coefficients an we use (1-8) with a 1 ~ an a 1
1 V~land A0

for the bns again (1-8) with at*?-V and b Z1. We can find
that:

1 01 a 71 0 2ab

rabi a I bjtai if IaI<Ibi
mi~(Ia~lbi) I Ibi if IbI(<IaJ 1-2

We observe that R, (0) =0 and R (0) = co . x=-O is a branch point
for' both solutions.

If 2v+l is equal to a positive integer, (1-10), together
with1 (1-8), continues to define R 1(x). The second Independent
solution R Wx in this case, has a logarithmic singuaiya

x--O and is going to be found later.

Analytic Continuation of- R W. R (x) in the Right-Half
x-Plane: We obtained two series representations for the solutions
R (x) and R (x) of equation (I 1-5,0).f They are valid only within
the circle lxI<min( lal , JI ), where they both converge uniformly
and absolutely. We proceed to obtain representations for these
particular functions valid in the whole right-half plane, where
x raries from 0O to oa

We use a bilinear transformation of the Independent variable
in the f orm:i
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x+p l-t

The constant p is conveniently chosen in each case so as to
optimize the rate of convergence of the resulting series in t.
The conformal mapping of x-plane on to t-plane, in accordance

with (1-13), is shown in figure (1-i). The half-plane to the

right of the perpendicular bisecting the line between 0 and -p

(shaded in figure (i-i)), maps within the unit circle ItI= 1 of
the t-plane. In this plane x varies from 0 to * along a straight
line in the fourth quadrant, or along the real axis. Corresponding-

ly, t varies from 0 to 1 within the unit circle. The singular
points of equation (I 1-50) map as follows:

x=0 t=O
x -a t a/(a--)

x = -b t = b/(b-p)
X 0 t=

The equation becomes:

dt2  (P-a)t+a] e(p-b) tb) + i

f(pma) t~a p2  v(V.1)

L(P-_b)t~ t-l) t 2) R (-

It now has three regular singularities at t=0O, t-b/(b-p),

tr-a/(aunp) and an irregular singularity at U:1. Thus, the trans-

formation has preserved the nature and rank of the singularities,

mapping them at their image points in the t-plane. This is a
well-known property vf bilinear transformations (9 p. 437). If p

is chosen as shown in figure (1 1), the singularities x--a and
x,--b map outside the unit circle in the t-plane. A power series
solution of equation (1-14) around t.0 will converge uniformly
and absolutely for ItI<l and would provide a representation valid
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over the whole interval of interest 06 Rex66a. The numerical

computations of Chapter 3, PART I, showed that such series can be
used for an Jxtmax 3 or 4 times larger than the jxj max of (1-i0)

and (l-il). It is not necessary to map x=-a ad x=-b Outside the

circle Itl l. Depending on the case under consideration, a value

of p can be chosen, that maps either or both of these points
inside 'Itl i, but which yields better series in t. The radius

e convergence is now: tnevertheless,
larger values of x can be used with such series, that may carry

one farther. In this connection, notice that x varies only along
a straight line in the fourth quadrant, or along the real axis,

from 0 to bo and that one is only interested in reaching up to

such values of x after which the asymptotic expansions of Ri(x)

and R2 (x) can be used. The fact that a series expansion can be

found, which is valid for all x from 0 to 6o, has no practical

significance from the computational point of view A series valid

within a smaller, finite region may be better if it can be used

for larger values of xi These facts were verified numerically.

I p should be chosen as large as possible, but not as large as to
result in a very small convergence circle in the t-plane. in each

particular case an optimum value of p exists.

For all Cases 1 to VI, Chapter 3, PART I, p was given the

following value:

P 2 a , t - ,x =.( - 5

We will develop the series expansions in t for R!(x) and R (x)
for this particular choice. For a different p the analysis
follows identical lines. Now, x=-a maps on t=-l and (-14)

becomes:

(t.!)4(t !) (t+ b )t2R,(t), 2ab (t.!)2(t.1)b3(t+!)(t b
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*t2R(t)(~.(t.)2t-v~v1) t4)t+ t,))(t) = o . v(1-1)

n~o

Th et ollown def0niionwere:ued

+(1-3)t(1-h].(n+)~(h-) t-4 4 (ivht+(h) (12 (3-1)

f x (h-) v+)-hv(1)h 2(+ _ 1 (1,h) v(v,

f b/2 -)(2xI4x22%+ wvvl (1-17)

f Cx) (h"3)x-i)vvi]=h2~)xv (1-18)Y

00

f1 (x) ~ (13~ 2 (-21) V~ (1-195)

Recurenc form3ula:-)+(+1(a 2 v+ 1-0



For we1 alWays obtain a solution:

n=

Where K is A Constant and the coeffIicients en are dete±~ined

using (-Y wit a, v+.I a- 2v+i is not an integer, use

Ot (1-2:6) and (1"27) with a m mv yields A second independent
solution. if 2v~l is equal to a positive integer-, the second

solution is logarithmic and will be found later.
For n--l equation (1-26) yields't el= -qf1(d)/f 0(a.i); since in

any case: a~-)±v(v+l), we obtain!

1 2 2h

As xm-* and t-~o0, we have.-

x+2a 2a +(x/2a) 2 a 2

Substituting in (1-27) we obtain:

R~) ~m)7( xr-ll+a Wa+1 x- ( 1 +0 x)+O x2)]2a 2 ha C) ()

K 17 1a -o 2E 02j111+(0+ + 0(X2 j
(2a - - 24 +(x?)- 2 2ha

K ar CT.m-19-
X-L±+ 1X+0 (x2 ) - LO 1 W +0 (X2 0

( 2 a) a / (2a)'

Taking K =-(2a)q and referring to (-0(-l)and the remarks

following them, we see that the two solutions defined by (1-27),
(1-26) can be identified with Rl(x) and R 2(W of (1-10), (1-11)

In the corresponding cases v+1 and 0--v - That Is:



2 ~ln=

Solution R1 is given for ,v R9 for a=-v, if 2v~l is not an
integer. If 2v+l is equal to an integer, R2 will be found later.

The series In x converge uniformly and absolutely for
Ixl<min( jai , Ibi ), those in t for ItlImin(l, Ihi), providing the

analytic continuation of Rl(x), R2 (x) into the right half-plane
shown in figure (1--).

2v+l IS EQUAL TO AN INTEGER

in this case the second independent solution R2 (x) of
equation (I 1-50) becomes logarithmic. The preceding analysis

is valid, without alteration, to the solution Ri(x) with -=v+i.

In the biconical antenna of PART I, as well as in other problems,
the second solution R2(x) appears indirectly. What is actually

directly involved is R4 (x), the solution which satisfies the
radiation condition at infinity, corresponding to an integral

value of v. Evaluation of R4 (x) for small x, where its asymptotic
series representation can not be used, involves both RI(x) and

R2 (x) of integral order. An equation like (1-54), PART I, must be
available to provide the analytic continuation of R4(x) in the

vicinity of x-O. Thus, not only R2 (x), but its complete asymptotic
expansion for large Ix , equation (l-53), PART I, must be known.

Following Whittaker and Watson (16 pp. 200-201), we put:

R2(x) inx R!(x) + S(x) , (1-30)

where R!(x) z amxm , ao= 1, is the first solution obtained
m=O

In the preceding section, and:
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We write equation (1 1",50) in the following forml

1 2 ="(),,X)R()12XRX 0 ,(1-32)

where:'

__ _ __ _ _ __ _._~ (,x) = x2 -(n- b- --

=r~x cx (1-34)

T X X4 +2&x3+ aa2v (V+!) 3x.V(V+1) (ab)x-v(v+1)&b .(1-35)

Substituting (1-30) into (1-32) we obtain:*

Ir (x) x 2 [R~i(x)1nx+2 GNP- +8- .s11(x)]I+-r (x) X[R (x) nx+
R0 (x)

+ x +S1(x)]+r 2 (x)R (x)Inx.S(x)] 0

Oo since R1 (x) satisfies (1-32):

98x~2 "(x)4.-r (x)xS I(x)+T 2 x)r x WO

=r0 x 1r x) R()2xR()-'()R() .O-

Substituting (13)(-3-1 )and*R (x)=., mvlith

above equation, we obtain: M-o

2. X-v(XflV) 4 mvFx+~l (1"37)

f(x,n-v) = (n-.v) (nwv~1)Cx2+(a+b)x~ab]+(n~v)cx+x 4+2ax3 e-.Cm

-v(v+1)JXR-v(v.1)(a..b)x-v(v+1)ab 4 Zf (nppv)x2
M=0



and:

P(x,m+v+e.) =-E2[( m~v+1)-1]tx2.i(a+b)x+,abJ-cx z Z. F (m+V+l) xj

The following definitions were used:

fI (n-v) (a~b) (nmv) (na-vw1) +(n*v)c6-(+b) v (V+Ie) ( 9

ft ( (n-v )( = ~ j (1-40)

f (n-v) = a(-1

f(n) 1 (-42)

F0 (m+v.1) =-abil2 (m+v+1) -1] (43)

F1 (m!~+1) " (a+b)[2(m+v+1)"1j-o = -g(&+b)(m+v+1).2b (1&-44)

F 2(m+v.1) = -2(m+v+1)+1 (1a-45)

Equation (1-37) can be writtoe:

~Ib~~~xnV) - 1 2v+1~ amxmF(xom~v.1)
n o m o

,and shows, Incindentally, that, with f(x,n-pv) and F~,r+v.1)

being polynomials in x, it can not be satisfied unless 2v+1 is
equal to a positive integer. In its right-hand side putt

m.2v+l1 n .(-6

it becomes:

2b xf (X,A"v) an2lx iF~xnv
n=;o n=2v+1 -v1 xnv

S~ice a= a2 . .= 0 . we can also write it as follows:



7- xnnf(x~n-Fv) 17 .an-vl xn P(x'fn-V) .(1"47)

The lowest exponent of x is n=0 a.nd its coefficient is b 0to (O&v)=
=0.- Generally for~ 1l44rn, 2v we have:

buf o(nsv) +bnif 1(n-v4) +bn,.f (n-vmw2)+b, 3 f 3 (n-v-3) +

+b 4 f (n-v-4) =0 s m ,23.. .(-8

For all these values of n we observe that i'0 (n-V) O 0 permffitting
to Use successively the recurrence formula antd obtain b1 b2,.

b2ej For ift=2v~l, i-es for the coefficient Off i ni

(1 -47), we haveo

b f(l) f l(v)+b; -f ("-)+b f3(v-2).b f(v3
2V+if(l l. 2V1 2v-1 2 2v-2 3 V-3 4ve3

aT (v+!) = "ab(2v+i) .(1-49)

Now, however, f (V+1) =0, according to (1-38). in order to0
satisfy (1-49), We choose conveniently the value of b, left

undetermined so far. Notice that b1 , b 2 "".. 02v determined so

far with the use of (1-48), are all proportional to b 0. In fact,

we can write:

b d , 1 , n = , , , , .~( - 5 0 )
on o

and use (1-48), with d in place of bn, to determine the numbers

d 0 , a1 , a 2 .... , d 2 v completely, with initial conditions:, d 0  is

4_1 = d_ =see,= 0. Then, (1e-49) i.s satisfied if we tae

b ~ab)(2v+l)

d f (v)+d f (vpl1 )+d f (v-2) i (-3
-2V1 2v-l2 ~ 2vm2 3v-- 4(

For the b nso (n l,,..2)we then use (1-50).
For n)>2v*l equation (1-47) yields:
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nfo(--v)+bn2nf-n(n )n-232on3 - -4f4(nm

= an.2viFo (n-v) +a.2  i(n-v-l)+a 2 3F (n-v-2) . (1-52)

Remembering that ao 1, a -a 2 *.= 0, we see that this equation
is valid for all integral values of nj including (1-48) as a
special case. The supplementary initial conditions are.
b-b =bl= , b as in (-51) . (1-53)

Putting n=O in (i-52), we get: bof 0 (O-v)+b.4f4 (Ovm4) = 0 ; since
fo(O-v) ± 0, according to (1-38), we obtain b 4± 0. By repeated
applications of (I-52) we also find: b65= bo6e..... 0. Thus,
conditions (1-53) are enough to satisfy all requirements for the
coefficients bn of S(X).

The process so far has left b2v+l undetermined. This does
not cause any difficulty. Looking at (1-52) we observe that if

it can be satisfied by the set:

bo  bl, b2, .... , b2vi b2 b2 ,.*

it can also be satisfied by the set:

bo+ka 2vl bo, bieka.= bI, ..., bgve bkab , 9..,,
0 ~ ~ ~ ~ ~ ~ vJ "2ml o 2 92+

where k is a constant. The reason is that the set:

4_2v-1 Of 0, 9.9. a0, ao , l, .

satisfies the homo eneous part of (!-R52) Actually for:

n =2v'+l+m bn= b 2v+l+m= B (-54)

equation (1-52) becomes:

Bmfo (m+ +)+B!f (m+v)Bma f 2(m+v-l)+B f (M+v-9)+Bm.4f4(m~v3)=

= 0  m-ol IMl (m-)
$Y(u+v+l)%Ilov)a . 32 2(u+v-1) .(1-55)



its homogeneous part is satisfied by the set ao, Al, .~..,As

a comparison of (1-"U) "(i-42)), f or ntm+2v+1 (or n-vm +v+l), with

(l1:") -(1-5),j for n~a~mev+!, reveals;$ equations (l-l)- (l-5) with
n+a~m+v+1 give the coefficients of the recurrence relation (1-8)

for the coefficients a~ aOf R, (x).
We can choose b VlB 6arbitrarily. The simplest choice isle

ithe process of using (15)for the bn Is. A non"vahishing
value f Or b v+1  B men ipy that 8 (x), and coneunl

R ocontain the additive Solution b -, R-(X), which can be

discarded in the definition of the second independent solution

R 2()6 To be definite then, we define R 2(x) as follows:

R (X) -- lznZ 91(x) xiv b -Xn ; IxI<min(IaI , Jbj)
no

b V+l 0 b b0  as in (1-51) .(1-51)

For the rest of the b 's we use (-2,15) hsdfnto

leaves no ambiguity as to which particular 2 (x) we consider.

Analytic Continuation--of R (x) n-the Right-Half x-Plane:.

We use the same transformation (1-15), as for R1 (x). In analo0gy

with (1-30) we write:

(t) = in 2at R ( t) +s(t) , (t) =2ctnv(1 58)

For a moment, designating the coefifcients of (11-16) by T Ct)
T1(0), T (t), We a write this equation as follows!

T0 (t)R"(t)+T (t)Rtt).T2 (t)n(t) =0 U (-59)

Substitute (1-58) In the above equation:
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ft(- t)

Uinte R (t) itself satisfies (1-59) , we obtain:

T-((t --! t

t(2-t)

Writing TWit) T1 (t), Tg(t) in full as in (1-16) and using:t

8(t) ga ,+ R1 t [! I * 3 t"J

we ob tain!

ncto n m=o

*t(t_1)
3

(1-11)+2t(t-1)
2

(t+1)(t+h)4.(m+v+1)(t-1)
2

(t
2

-l)(t+h)]

(2a)"1 1 *_th' 1 p(t,mev~i) ,(1-60)

where!

F( t,m~v+1) = (m~v~l) (2t5 ( 2hw4)t t4 Ot 3 44t2 .( 4h-)t-h4

5
+E(2-l) t 4 +4(h-1I)t-3(24-h)t 24hJ = 7 (.+v+i) t~ (1-61)

6
f(t,n-v) = jf (U-y)t 3  1-2

q o q

The fumotions appearing in tjie last equation are exactly the ones



that appeared prviously in ''~t) thus, P6X of(x) are

defined by equations (1-18) to (1-24). On the other hand, the

f ollowinig new functions were introduced in (1&61):

P(x) mh(gx"1) (-3
0

F1 (x) =(4hw2)x (1-64)

1 2 (x) =4x+2-4h 65

F3 (x)W = -4hx+4(h-1) (1-66)

F4(x) ±(h"2) (2xi-1) (1-67)

F 5 W 2x e (1-68)

As with Rl2 (x) we call:

0 H ,( 2 a)vl a. 69 16 -0 ,m = 12,... (1-69)

and write (1-60) in the followin,g om

00 2~v+l c'
H02 ~~t~~nv =t 2  et--- F(t,m+v.1) .(1-70)

For 1-_4n 4,,2v this equation yields the following recurrence
formula:

6
fg (n-vq= ; m ~ ; =0 , 12. 171)

with the use of which $19 $2?'"I g*~ 2v are evaluated. For n=l

it yields:0

I-r ("V)/f (l-Rv) 2h * (1-72)

For n=2v+l equation (1m-70) yields:



-1-16

- -h(2v+l)

since to(V+) = O, according to (1-18), this equation serves

simply to define Hot i.e.

h(2v)+1"°=- &-i (.)g,-

2V"4:t5 (v-4) ,g2v 5f6 (v-5)

For n> 2v+l equation (1-70) yields the foiiowing recurrence

formula for the remain ng coefficients

6
f 6--q(nv e) e2v-iq Fq(n-v-q) . (1-74)

AS before, the process has left g2v+l Undetermined. It will be

chosen in such a way as to identify the present solution R2(t)
with the solution R2 (x) defined explicitly in (1-57). Comparison

of (1-58) with (1-30),(1-31) and (1-15) expresses this require-

ment as follows:

n(t) =oHn(2a)v1t " tn = S(x) = xdVbo , (1-75)
0 o n

where as in (1-50) we can write bn b od for all n. Substituting

- A - (+ 2a) we obtain:

b
0 9 dn n (1-76)

Hn o ~~~ +2 (2a) -v-n=o

For sufficiently small IxI the binomial theorem yields:

(1 =x v-n +
(.2 4, 2a



(vn v.n.) (v-mnml-m.) ~ **** .(-7

if v-n is equal to a posaitive integor, it reduces to a fin~ite

Polynomial. Assuming v itaelf to be an inteeger (if v=n.J./2 the

pirocedure remains the same), we write (1476) as foilowast

r -+ 2aa

(H--) (v+ X- ) 2,i +os.:x)v _

2a ra

+6v v- +
2 2a

A , - l - 2 2a-) + ,. !

(X)2v ~-*l[- (vX- (v-) (v2

+- v+2 -.2 1  v~ i2v.
= (_ _c ra - 1>*2v,

- 0 (178

andF- frmtecefcin+f 1 vi



82v~l = (.) v( -V1 )v (z)
Vgvl+(v4.) .@ vtf+2)

.(-l)Vr Cm-1)_! )V +3 .... vg2  (-79)

For v ni/2 this formula is modified by inclusion of some addi-

tional terms. With this definition (1-74) can be used to yield

a1Lg~'a fr n42~l~The s-ecdond m tn'.Af~p'AmI

in (1-57), can also be written:
H (!2 a ) Vl

Re W)tR t) inx R (X)+ 1+ i ann] n J% 1tj<min(ip IhI ) (1-8o)
t n~l

and so, in connection with (1-29), can be analytically continued

into the right-half x-plane shown in figure (imi).

Equation (1-78) can be checked easily for low order functions

(for example v±1,2,3), using directly the definitions (1-51),

(1-73). For large v the numerical computations of Chapter 3,

PART 1, checked all relations and proved them correct. In Cases

i and Ii, both series in x and t were used to evaluate R

R2(x); the results were identical. it was also found that, while

the series in x for both RI(x) and R2(x) had the same rate of

convergence, the series for R (t) was better and could be used

farther than the series for R2 (t). The coefficients gn increase

faster than the en's. As the order v of the functions increases,

both en and g increase faster, rendering the rate of convergence

of both series in t poorer, In any case, the series in t could

be used for larger IxI than the series in x and were able to

carry the computations into the region of validity of the

asymptotic series (especially for x close to the real axis).
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ASYMPTOTIC SOLUTIONS R(x) R4(x) AROUND x --

As x o the coefficients of RI(x) and R"(x) in equation

(I 1-50) vary as'

1 + v ( v(i,)
(x+a)(x~b) '- x2 -, ~-b

Point x=oo is an irregular singularity of rank 1 (10 pp, 58-77).

We follow the method of Chapter MII in reference 10. First, we

eliminate R'(x) by putting:

W(X) F V(X) =y(x)v(x) .(-1

Points x-,a and xe-b are branch points of the general

solution of equation (I 1-50) and in the cut x-plane with branch

lines from x=-a and x=-b to o (along the negative real axis

preferably), the functions R(x), y(x)z4(x+a)/(x+b), v(x) in

(1-81) are analytic and single-valued. We obtain for v(x):

V'(X)*[ 2 (yYy) +(:a €)(c )IV() (Yy) + (yyy) 2 (Yy) (z0- (-0 2-

(x~a) (x+b) (x+a) (x~b)

+1+ (Y+ )0

-i+b - x)x-"

But yyy -c/[2(x~a)(x+b)]:. So, we get:

v"(x) + q(x)v(x) 0 0 (1-82)

where:

= v(V+) 1/4 3/4 1/2
xx 1+ - - - a+

(X+b)2  (x+a)4 xa)xb

b (+l) ..- 2.
It x U 2 x 2ox x



x

For' lxi> max( Iaj, JI we can use the binomial theorem to obtain
the expansion:

,q(x) -,n~~ .(..4

A few manipulations yield:!___

q= c(b 2+1) (-8

r- 7 2c (8)

We now try to satisfy (1-.82) with the formal series:

v~x= eX2.t~xnho# 0 I'xI>max( lal Ibi) .(i-go)
n=0o-

Assuming q~m h-m= 0 (m=i236..) and substituting (1-90) and
(1-84) ilkto (1-82) we obtain# after cancellinS th fatr*e

(10 pp. 58-77):

~2 ~ ~-p,-n p-- (n.+P)hx Zpnl ( p)n +)hxPwn- 2.

g=oo kb

PuLtting the coefficient of xMP"A equal to zero We obtain:



for n=Oj1,2,i... (for -=1-,~.it is automaticdaily satisfied,
since hm 0 ~ m6,2.. o

For nt=0 we get: a-) 2+ 0 or M 2 +1 =04 That i dl=

For n=1 and since w +1 = 0, we obtain:

"2a0P+q 1= 0 or P ± c/2 i.e. p1= &40/2 0 2= ic/2

From :(1-91), replacing n by n+1 and using to +1 0, p c/e we-

also obtain the following recurrence formula for the h-I.

2-Ofh Oh n+1

M--2

Taking h0  1 We caft fintd:

24)

and so on. We then obtain two particular normal solutions around1

x= Wo

4n=

Where R3 Cx) Is given for w D i, P1= -ic/2 and AR4(x) for 02 -I
= Ic/2. The series appearin in thInvefra representios

are normal asymptotic series in the precise sense of Poincare' a

definition (9 pp. 168-174 444-445, 10 pp. 69t-72), in the region

IXLI> Max(141 ,Jbj) Expanding according to the binomial:

we obtain the alternative expressions:
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,..,..xX~ 1 ,(claw) (0/2a+.)-V(V+)-cb1

4 2M

= Pi( +c2)c2n~)vv)c +
2w

+ +... 6 (1-94
x

Which will serve for comparison later. Another useful remasrk is

the following:e in the real case (i.e. ajb real) we have Pl P
- ic/2, where the bar signifies the complex conJugate, while

always M1  03= io Then, according to (l-85)-(l-89) all s are
real and the recurr'ence formula (1a-92) yields as coefficet

fo R(X) the complex conjugates of the coefficients of R4(x).

The same is obviously true for the coefficients gn in (1i-94).
This meansle

R 3x x) & ,b real ,(1-95)

or for real x:

R3(x) =- R4() .(1-96)

The critical line, or Stokes line, -is givenl by (10 p. 72):

R.(w~x) = 0. If X=xr +ix±P With a -- +i we have:

Rec~i(x r+ix I)] =x - 0 or --

So, the real x-axis Is the critical or Sto~cee line. Any solution

RWx of equation (1 1-"50) can be expressed asymptotically as a

linear combination of the above formal solutions aR , i1.e.

W~),J A35 R3 (x) +A4 R4 x) (1m97)

and this expression holds uniformly in each of the upper and
lover half x-planes separated by the Stokes line xi1= 0. The
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coefficients A3 and A4 may ' o ourse, change Values from ones
plane to another for the same solution R(x) (10 p. 7-3). A similar

combination expresses R(x) along the real axis.
The main problem of' this r~esearch is to find explicitly

expressions like (1497) for the particular' solutions fl1(x)I R Wx
defined in the prtceding section, in both halves Of the xa-plane

and along the real Axis. This is the subject of chapter 2. One
last remark concerning the evaluation of R3(xW and R (x)6 For

complex a, b, x it was observed, that the asymptotic series for

R 4 (x) could be used earlier, for smaller 1xIj, than the asymptotic
series for R'3(x)b The order V did not affect much the value lxi,
after which the asLymptotic series could be used.
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ASXNPTOTIC EXPASIONS Or R1(z, R2 (Z) FOR LARGE IZI,

INTRODUCT ION

We are going to employ the method of W. B. Ford as developed

and applied in Chapter~ Vill of his book, reference 7. Starting
with R1 (Z), R2 (z) as defined solely by.,

-

Rk ~ n Zl +-bf n ]zj<mhIn(j Ibi 2v~lginteger

anfo (n+o)+an ~ +~)a~ 2 na2+~ 3 n~)

*an- 4 f 4 (n+ea- 4 ) = 0 ;aawn= 0 j m ± 12,3,.... (1-8)

around Z=0, that is without reference to the fact that they are

solutions of:

v(v+!)
R "(z) + 9-R(z)+[l+ ~--~-Rz 0, (1 1-50)

(z+a) (z+b) z z2-

we are goinC to obtain their asymptotic ex ansions, More prec-01

sely, in a manner independent of the previous results, We will

arrive for R 1(z), and when 2v4.l Is not an integer, for R2 (Z) to

expressions like:

R(Z)r-a R3 (z) +A 4 R4 (z) ("7

and at the same time determine explicitly the values of the

contas 3 , A4 . The procedure will also yield the same functions
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R3(z) and R4 (z) in exact agreement with

(c/2wb)(o/2M.lYl-V(v.1)-ob(R/-3 Z) o./ j )60' 2v 2i -- 2-

; ,.. cn = i , p3 -= ic/2 . (1-94)

44 4

In a subsequent section Ford's method will be extended and
applied to yield the required results when 2v+1 is an Integer.
Ford does not treat this case in his book but refers to it as a,
aubject for further research. Since odd integral values of v
appear in the solution R4 (z) used in region (2), figure (1-2),
PART I, outside the antenna, we must find an expression like

(1-97) for the logarithmic solution R 2(z). Then we will be able
to obtain the linear combination R4 (z)-A 41R1 (z)+A 4 2R2 (z),
permitting the evaluation of R4 (z) for small I zi.

We are going to make use of two fundamental theorems proved
in Chapters I and VI of Ford's book and refer to them as Theorems
I and VI, respectively. They are as follows:

Theor:em-_I:" " If the coefficient g(n) of the power series

f(z) - gnzn , radius of convergence >0,
n-o --

may be considered as a function g(w) of the complex Variable w =
= x+iy and as such satisfies the two followin 6 conditions when

considered throughout any arbitrary right half plane x> xo
(a) is single-valued and analytic
(b) is such that for all jyl sufficiently large one may write

lg(x+iy) < KeI l1 , where e is an arbitrary small positive quantl--
ty given in advance and where K depends only upon xo and 6, then
the function f(z) defined as above, is analytic throughout any
sector 0 (vertex at origin) of the z-plane which does not include
the positive half of the real axis and f(z) within 8 is develo-



pable asymptoticaly as followSt

f zWev -2:--
n__l z

The theorem is suppisemented by some remarks and generaliza-

tions;e we shall make use ot the following!

(i) The theorem is valid -if g(w) 0 besides Satisfying condition
(a)o is such that we may write, when x~,and 1 ___

Ig(w)tI X WI CWhere K and c are constants of which the latter
may be positive,, negative, or zero.

iiIf f(2) is defined by a power series of the type

n~o

where gp aei4 is a constanto then the theorem continues as before,
provided conditions (a) and (b) are Oatisfied, except that the

excluded ray instead of argz = 0 is now argz 4.

Theorem-Vlz " Let :t(z) be a function of the complex variable

Z defined by the Series:

h h(A) Z
f(z) =noFnp

in which p is any constant (real or complex) and in which h(n)

may be regarded as a function h(w) of the complex variable w

=x+iy and as such satisfies the two following conditions:

h (w)
(a) -_____ is a single-valued, analyi function of w throughou

the finite w-plane,

(b) h(w) is such that, when considered for values of w of large

modulus lying in the right half plane R (w) .x >x , where x -is
0 0 -

some assignable number, it may be expressed in the form:

b (w =0 +wLR*)
0W+P (v+p)(W+p+l) (W+p)(w+l+)...(w+p+8-l)



in Which the di are constants and lim a(WOO) 060 8=0021,..

Then, for values of z of large modulus, the function f(s.) has the
following asymptotic expansional

n:. (-.n)zn

f~s),~J- P-f/<ag(f

in which l-atter development it is understood that, if a= p

we take.,

mor'eover, if in (b) the quantity x may be regarded as an arbitra-

ry large negative number, the function f(z) is developable

asymptotically when argz + Wf/2 in the form of the sum of the
series in the above two expressions under the same Interpretation

for
the following remark can be added.: For -wf/2.(are%4iT/2 an

equivalent asymptotic expansion iss?

00 h(--n) *
f (Z)rJ +e ____ a1p 2 - /2<argz<r/2

- 1F~p-n) +e n n - o ZA

Theaded eres syptotically contributes nothing to the

expansion. In fact, by factoring out ez we have:

n4 Fp..~z---o zR

Niow for "ir/2(argz<iu/2 e- has the following asymptotic

expansion: *-e%O0+ 2 + ... *Then the sone is true for



wtl r(p.,n) zi z 2

Therefore, the two expansions are asymptotically the #am.

SOLUTION OF TIM ASSOCIATED DI REC QUAT ION

What essentially def ines R i(z) and R 2(z) , as given by (1.410),
(1-11) , is the recurrence f ormula (1-i8),j together with (lm1)-(~)
for the coeffticients a n i ollowing Ford (7 Chapt. VIII)o we replam

de the index n by the continuous variable x arnd a., by the general
function u(x). That is, for x =n, nt being an integer, we havet:

Then, the recurrence formula (1-8) transforms into the difference

equation:
4-

:r %(x~id-m)u(x-M) =0

Advancing x to x+4, i.e. writing x+4 for x. we get:
4
2f (x+a+4-m)u(x.4-m,) =0 U (-2)

We next substitute:

=~ y (2-3)

U(X) v(x+a) V(y) (2-4)

arid the equation becomes:

pyv(y+4)+p3 yvy3)p(y)v(y+2-).P(y)v(y+l)4.

+p (y)V(y) = 0 ,(2w5)

whore, with the use of (1-1)-(!--5), we havql



p4 (y) =fo (x. A) -t(y 4) =ab[(y+4) (y 3)-v(v+l) ]=

=abt (y 4)(,y ,5) -2(y 4) -v(v+!)) (2-6)

p3 (y)=f ( x 3 ) =f1 (y 3)= ( a~b) ( y ) (y 2)+co( y+3)-.( a~b )v(v~l) =

=(a+b) (y+3) (y4)..(a+3b) (y 3)&-(aIb)v(v1) (2-7)

=(y+2) (y+3)-2(y 2) a2-v(v+1) (28)

p1 (y) -t (+l)f3 (l)a(2)
p0( y)=f4 (x+c)=f4 (y)=l (2-10)

The last expressions for the p(y)'s have been written down

as the suitable forms for the solution of equation (2-5) by the

method of Laplace's transformation (7 Chapt. VIII, 17 Chapt,

XV pp. 478"501, 18 Chapt. III pp. 57-88).

In order to be able to apply Theorems I and VI we must find

that particular analytic solution i(y) of (2-5), which satisfies

condition (2-1), or, in terms of y and f(y), the coaditionsi

(nev+l)=an for all inteSers n and for R1 (z) (2-11)

*(n-v)=b for all integers n, 2v+l not an integer,
n

and for R2 (z) • (2-12)

Equation (2-5) is a linear difference equation of the fourth

order with polynomial coefficients. It possesses four independent

solutions. For the general theory of these equations and espe-

cially for certain of its results, of which continuous use will

be made in this analysis, we refer to Chapters I, II of refe-

rence 18, Chapters XII and XV of reference 17 and Chapter VIII of
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reference 7.

The method of Laplace's transformation in applied by assuming

a solution in the form:

v-1- S Vv" Jt *1(t) dt ,(-3.)

where t is a line of integration in the complex t-plane, suitably

determined later and I(t) is found from a certain differential

11,~n.asil ~ n the 61own First,- we note that by
integration by parts we can get:

(y B) ty + s '1 *at = St ±d [t"'Sc(t)]"

- tY8*,(t)dt (2-,i4)

-Y+S+ 14I (t)]++ $ +tY S+11(t)dt • (2-15)

Substituting (2-13) into (2-5) and using (2-14),(2-15) and

the last expressions for the p(y)'s in (2-6)-(2-10), we easily

obtain:

f tY"[ t2# 2 (t),"(t)tl(t)" (t)+,o(t)l(t)Jdt+[I(*,t)Jt 
= 0

where:

42 (t) abt
4+ (a+b) t3 +t2= abt2 (t+l/a) (t+l/b) (2-16)

tl(t)-2abt4-(a+3b)t 2t- 2 t2 ab t2 +(a+b)t+l] +t (2-17)

fo(t)=.abv(v+l)t+t 3 [a2-v(v ,)]t 2+2at+l =

-v(v+l)abt 2(tl/a)(t+1/b)a 2(t+l/a)2  • (2-18)

It can now be seen how the last expressions for the p(y)'s

in (2-6)-(2-10) are suitable for the formation of the f(t)'s.
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we also have fro I( ,t) (17 pp. 478-501, 18 pp. 57-88):

l(nct) 1 *(t)tyOI,(t) -L,-(ty 2 #(wii(t)ty42( t)

since ( [ #i (t) ga ( 2 )#( t+), t(t ) +0 (%)4a 4+ 3 &(t ) t3+ (2-

2abt 3 (t+1/b) , we also have:

SabtY2(tl/b*(t)[ C(yl) (t+i/a)2t-*' (t)t(t+l/a (2-20)

We conclude that (2-13) provides a solution of (2-5) if *(t) is a

solution of the differential equationt

abt4(ti/a)(t/b)1"(t)-t#(t)t'(t).#(t)I(t) = 0 (2-21)

and the path of integration I is chosen so that I(*,t) has the
Same value at both extremities of the path when it is open, or so
that !(*,t) returns to the same value if t is closed and t

returns to the same point after describing it.

We now look for the behaviour of the solutions of (2-21) at

the vicinity of its singularities. The equation has three regular

singularities at t!=-i/a, t2=-i/b, too and an irregular at t=O.

For its solutions around t=0 we put:

= em/t n tn
+  0- 1.

n=o

Then:

d*t A_ 00t2  (n~gt 1  rnM/t~ tn+O-2
n-o n=o

d2 n/t+0-2 4-0-3
dt2 = e n (n+ )(n m1)gntn "2mem/n (n+0)ntn*-'- +

n2ca/t o ntn 1 t"3+ " n~o:tn 0"4+ 2,m/+
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Substituting in (2-21) and after the factor el/ttO is cancelled

we obtain:

n2o nf+ 0 n2oatI+(&+b) t l at ( b t 2-m :E (nO (a t) -nt m- 2- t
00

n no n~o

+[-abv(v.i)t 4 (a~b)v(v+i)t3+(a2-v(vI))t.2at+!JZgl t n - 0.
n=0

Equating the coefficients of tn, n-O,1,2,3,... to zero we have:

Fort o go m2
0 o . m2  +10 ,or m i m -i

For t: -,wg+ (ab)m 2 6o.2mgo-2mo+2ago Si= 0, or 2,p c,

0 c/2m , i.e. Oi= -id/2, 02= ic/2. So, we obtain two normal
solutions around t O:

it) ei/ttid/2(i+8lt+8-t2+..,,. ) (2-22)

* ii(t)r e-i/tt!C/2(lbj-t+4gt2.....) (2-23)

The series in parentheses are asymptotic as t*O (9 pp. 168-174

444-445, 10 pp. 69-72). The theory also assures that *I' *I' are

twice differentiable and that the asymptotic expansions for

1I, II (even for can be obtained by formal differentia-

tion of (2-22) and (2-23), respectively (10 pp. 58-77). Now

considering 'i(t) and I1.1(t) in connection with (2-20) we observe

that if t-.O along the real axis we are going to have:

I(it) I(*IIt) 0 as lon as Rey> "-l+imagcll/,

Since any solution of (2-21) is a linear combination of *I and

*,I we have:
If Rey>--lIl1maacl/2 ![*(t),t]1  -0 (2@-24)
-. .____y -... . .. . -. I t -

for any solution *(t) of (2-21) and as long as t goes to 0 along
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the real t-axis. This statement will Serve to fix the path £ in
(2-13) s that to provide a solution Of the difference equation

(2-5).
The indicia1 equation around t1±-1/a is:

rtOi(t)
-J  0 with roots =0 and 2.

Around t =-1/bi t(o1)C-----t ______

2b Pt1a --1/ roots:. 0 ,and

Since ti=-l/a and t2=i/b are regular singular points of

(2-2l) there exist one solution *1(t) of this equation around

ti- /a and another *2(t) around t 2 -1/b, which, in the neighbor-

hood of the corresponding point and up to the nearest singularity,

can be expressed by the foilowing convergent series:

l1(t) (tEi/a)2 l+pi(t+l/a)+p 2 (t+1/a)2+.....] (2-25)

' 2(t) = l ql(t+/b)+q 2 (t I/b)2+.... (2-26)

We observe that *j(-I/a) *' 4(-!/a) z 0 so that from (2-20):

I[*l(t),t]It_"!/a= 0. Also from (2-20) and (2-26) we see that:
I[ 2(t),t]I t_..i/b= 0. Combining these results with (2-24) we

conclude that there exist two corresponding solutions of (2-5) in

the form:

V() ty-il(t ) dt (2-27)

(y) - ts2(t) dt

where the paths f and f are shown In figure (2-1). The dotted

lines represent the branch lines of *"(t) and * 2 (t). The paths
t and t can be deformed as long as they do not cross branch

1 n2
lines and end at t=O along the real t-axis.



2-11
The so defined solutions v1 (yv) and V P(y) are analytic for

(7 Ohapt. V-1-11 17 pp. 478a-501 9 18 Chapt. III):

Rey> m-i+ [Image.[/2 .(-9

it will be shown later that they are also intdependent.i
in order to obtain the third and fourth independent solutions

Of (2a-5) we put (7 Chapt. VIII):
v~~~y)pt V1)/1) 2-0

and substituting in (2-5) we obtain:

4

!oPi-(y)w(Ym+)/(y+m) ±0 ,or

+P 0 (y)W(Y) =0,(-1

where with the use of (2-6) to (2-10):

P4(y) P4(y) ab'[(y+4) (y+5)-2(y+4)-.v(v.1)] (2-2

P3 (y)=p3(y) (y+3)=-(a+b) (y+3) (y.4)(y+5)-(3,a+5b) (y+3) (y+4)+

+[a+3b-(a+b)v(v+1)](y+3) (2--33)

P2(y)=-p2 (y) (Y+2) (y.3)=(y+L2) (y+3) (y.4) (y+5).-6(y+2) (y+3) (y+4)+

+[a2+6wv(v+1)] (y+2) (y+3) (21-34)

P (y)=P0 (y)y(y+l) (y+2) (y+3)-y(y+l) (y+2) (y+3) .(2-36)

Following similar steps as before, we assume a solution In the

f orm: W(Y) = 1- t-yw14(t) dt and form the functions:
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= t2 i (2-37)

(a+b)t3 -6t2+2at (2-38)

t) 2ab t4  (3a+5b)t3+ca2.v(v.1)jt2 (2-39)

(t) -2abt4 +1 a 3b- (a~b) v (v+) Jt (2-40)

±av(v~l) t4 .

Then *(t) Mubt satisfy the following differential equation:

(t2 i t4 '(t) 437 (t) t3,() 2t 2''()"i( )  t

o(t)*(t) , (2-42)

while in this case (17 pp 478-501, 18 Chapt, II):

3 2-- Miz.

t) 2 -mod tyI m 2 m ( -(t) tY34()" 2-lm~o t ~ dtr

NOW, equation (2-42) has three regular singular points at
t#0, t3 -I, t4--i and an irregular singularity at t=co. The mndi-
cial equation around t70, according to (2-37)-(2-42), is:
P(P-1)(P-2)(P-3) = 0 with roots 0, 1, 2, 3. Four independent
regular solutions of (2-42) correspond to these roots and any
solution of it can be expressed as a linear combination of these
four, These solutions are of the genera! form:

's(t)=-t 5 fo(t)+fl(t)lnt ..... +fm(t)(Int)m], where s-1,2,3,4 and

m 3. fo(t), fr(t), .. ,., fo(t) are analytic at t-O. Then tY (t)
vanishes at t70, provided that Re(y+ps)> O, or Rey>0,--,:2,-3.
So, if Rey> O, t74s(t) vanishes at t=-O for all *3 (t). This faot,
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oombined with (2-43) means that:

it Rey > 0 : (4f,t)lt=... 0  (2-44)

for any solution *(t) of (2-43)6 The result Is that for paths

starting and ending at tO, we will have [I(*,t)) = 0 for any
solution '(t), of (2-43), provided that Rey> O.

The indicial equation around t i ist:
3o

with rott 0, 3, 2 and t -ic/2. Ar0ud t4± -i:
t= 0

with roots 0, 1, 2 and J4 =ic/t.

As before, there exist two solutions '3(t) and *4(t) of
equation (2-42), the first around t=i, the second around t±-i,

which can be expressed by the following convergent series:'

*3 (t)=(t-i)-ic/2[+h(t'i)+h2(t i)2+...] , ft-il< 1 (2-45)

ti2..] It+il< 1. (-6~4(t) (t+icl2[l+fi (t $) f2 (t )2 ' '] ,Ii< (2-46

Then, combining with (2-30), we find two other independent

solutions of (2-5) in the form:

1 (ytY ! J(t) dt (2-47)

where and are shown in figure (2-2) (7 Chapt. VIII). They
start and end at t-O, as condition (2-4) requires, enclos~ng !

and -i counterclockwise. The t-plane is properly cut by the

bra nch lines of *3 (t) and *4 (t), correspondingly, shown by dotted

lines in figure (2-2). The so defined solutions v3 (y) and v4 (y)
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of (2-) are analytic for

Rey>O . (2 -49)

We have found four independent solutions of the fourth-,order

linear difference equation (2-5):e v (Y) and v (y) defined and

Analytic for Rley > ri4Ij1magcI /2 and given by (2-27) and(28)

____________ ~r(Y) and v (y) defined and analytic for Rey> 0 and given by

(-47),j (2"48).4 For Rey< ml+Ima86c/2 and Rey<O0 we defin~e the
an~alytic continuation of v1 (y), v2 (y) and v 3(Y), jv 4 (y), 0 esPe'etiw
vely, with the use of the difference equation (2-5) Itselfe That
is:

V (Y) = -CP4(y) va(y+4) +p3 (Y)vs (y+3)+P2 (y) v (y-+2) +

+2av (Y+l)3, ; 51,2,3,4 2 (2-55o)

We see that the so defined four solutions of (2-5) are analytic
in the whole y-plane.

We are now going to obtain expansions Of these functions In

terms of inverse factorial series and investigate their behaviour

as y-.a-o in the right half y-plane, heretofore indicated as:

We first observe that v,(y), v (y), w3(y)#V3(yFWy),

and w4(y);=v 4(y)F(y) can be expressed in the general form:

where f ()is analytic at tzt but not at tm-0; the so defined

functions of y are analytic ;for Rey> ys, (where y5 ~lIrac/

for s-1,2 and 0 for s-3,4). Looking at-equations (2-21) and (2-42)
we see that t-0 Is a regular singular Point for f (t) and f (t)

appearing in the definition (2-51) for w3(y) and w4 (y), but an
irregular singularity of f (t) and f(t Wassociated with v(y

and v (y). (Equaton (2-42) has also an irregular singular point

At t=-op but all the paths £In (2-51) begin and end at t7=0



without approaching the Vicinity of t o; actually, this is why

(2-151) defines u a (y only ini the right half plane Rey>Y.). The

appearance of' irregular singularities in (2-21P) and i(2 42) is due

Originally to the tact that equation (I1 1-50) for R!(P) and 2()

and consequently the functions themselves, have an irregular

Singularity at Z bo (7 Chapt. VIII-); this, in turn, leads to a

non-normal form for the associated difference equation ( --5) (7

_________________Chapt. VIII, 17 pp. 478-501, 18 Chapt. MI). ____

When t±tO is a regular singular point of fis t),0 it is a

familiar fact of the theory of difference equations that, if a

sufficiefttly large positive number w, is selected, then u,(y-), as
defined by (2m-5) for Rey>ya, except for a constant factor

depending only on w, t5, Psi can be expressed int the following

form:

a r(y/) (,

where.-
((5)

(s) _ - -(2w-53)

nia(y+mp S+w-) (y+o .+2D) ... (y~wOS +nw)

is an inverse factorial series convergent for Rey> y. (7 Chapt.

VIII, 17 pp. 485-487, 18 pp. 61-64). We can apply these expansions

immediately to w3 (Y) and w4(y)' since t.= is simply a regular

singularity for f (t) and r4 (t). Looking at figure (2-2) we see

that~ and(t can be deformed into the circles jt.and
3 4 I-l=

It+il!, respectively* referring to references 17 (pp. 485--487)
and 18 (Pp. 61-64) we conclude that in these cases we can take

= 1.v3() ad v4 y) re end by (2-45) to (2-48). Comparing

with (25)to 1(2-53) and with mml we obtain, except for a

constant factor, the following expansions:

(3)i 1

yV)O()f(,r1.o 2) ;Rey>O ; i=81IT' (2-54)
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(4)

v4 (y) = (..)Yr (y)/l(Y l io/2) ; Rey) o ; .*-i7" !/2 ( -sS5)

1 + + / ... , Rey> 0 (2-57)
,.(Y)O =+ y+l+ic/2 (y.lic/2) (y+ +ic/2)

The inverse factorial series (Y) (y) converge uniformly for

Rey> 0. Their Coefficients can be obtained by the
method explained in references 17 (Chapt. XV), 18 (Chapt. 1II),

or by direct substitution into the difference equation (2-5) and
application of the method of undetermined coefficients. We will

find them explicitly later using the former method. For the Se-

neral theory of inverse factorial series and their properties we

refer to references 17 (Chapt. X), 19 (Chapt. VI pp. 170-177).

The constant factor for v3(y), v4 (y) was selected so as to
give them the form indicated in (2-54) to (2-57), which will

prove of convenience later. Hereafter we adopt these definitions

for v3 (y) and v4 (y), instead of the integral forms (2-47),(2-48).

They are simply constant multiples of the latter. As before,

v3(y) and v4 (y) are analytic for Rey>O0, the same being true for

(3) (4)
(Ya (y) • Their analytic continuation for Rey0 is again

provided by (2-50) and makes the so defined functions v3(y) and
v4 (y) analytic throughout the y-plane.

When t=O is an irregular singular point of fs(t) -n (2-51),

convergent expansions of the form (2-52) and (2-53) can not, in

general, be obtained. However, with w=l (2-52) and (2-53) provide
an asymptotic expansion for u (y), as defined in (2-51), as y-o

- -_ _s0 -t

in the sector -v/2+6 <argy <v/2+4 (6> 0 and arbitrarily small)

(7 pP. 309-318, 8 pp. 70-74, 17 pp. 457-459, 20). This statement
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is based upon a theorem contained in reference 8 (pp. 70-74). It
is due originally to iorlund and its proof can be found in

N6rlund's original paper in "Acta Mathematica", reference 20. We
give the theorem in full, as contained in reference 8 by Ford,

because it serves to clarify many points regarding the solutions
of differenee equations with polynomial coefficients, which we

have been making use of.

Norlund-s The-orem: "Given the linear difference equation
xM

where the coefficients are factorial series of the form:

c c 3 .... , (U)
x+! (x.1)(x+2) (x+i1)(x+2)(x 3)

all of which converge thrOughout the right half of the x-plane.
Suppose first that the roots a1 , a2, .... &, ak of the characte-

ristic equation

( 0)k M - (0) 0 (III)0 0 z C 0  z + * .. .. c 0 0 ; c o - 0 , c o 0

are distinct. Then there exist k solutions ul, u2 ,....., Uk Of

(1) such that throughout the sector -wT/2 E<argx-4/2-e (
arbitrarily small and >0) we have:

x (x ,!)

where Pj is a constant and jW a factorial series of the form
indicated In (II), In case (III) has multiple roots and a is an

n-fold root, two cases are distinguished:

() a is at the same time an (n-p)-f old root of the equations

k (s) k-s

p, p = 0 ; P = ,2,...., n-l6=-o
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(2) These conditions are not fulifiled.

In (2) no asymptotic development exists of the form (IV). in (1)
there exist n linearly independent solutions u (x) (A=l,2,.,,n)
such that when -,/2e<argx<n/2w- we have:

u X

where:
~r(xi) r(xl) n )

+1) s 5+1) nP, (xp +l)

the expressions #0' i...' n being developments of the form

If some of the roots of (I1) are zero or infinite, it is
necessary, in order to obtain a system of fundamental solutions,

to use a series of substitutions of the forms

U (x) r (r) vr r)

W r(x) U(x)
and determine vr so that the difference equation in w(,) shall

have a characteristic equation containin6 at least one root which

is finite and different from 0. It is always possible to determine

in but one way, a series of numbers ! V29 ..... v m such that

the total number of roots which are finite and different from

zero in the corresponding characteristic equations thus obtained,

is exactly the order k of (I). If, whenever a multiple root occurs

in one of these characteristic equations, the corresponding
conditions under (1) are satisfied, then there exist a system of

fundamental solutions of (I), each of which is asymptotlcally
represented within the sector -Tr/2 6(argx<Tr/2-e by a series of

the _oM: rvr ) ax (x) . If no multiple roots occur In one of

these characteristic equations, t4e solutions have the simpler

form:
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r~ F r(x~l)

A ! a j j -X+ 1

Exceptions occur when some of the numbers 'r are not integers.
Then the coefficients in the above-mentioned difference equations

GL-)
for W I(X i) are no longer developable in factorial series of the

form (II). Suppose pr is equal to a rational fraction p/q. We

put x~pz, w(x) =V(z) and d-erive from (I) a difference equation fo-F
v(z), thus demonstrating the existence of solutions expressible

asymptotically in the forms:
P-

Here we are dealing with the difference equation (2-5).

Dividing by p4 (y) and making appropriate change of variables,

like y+'t=x, v(y)=u(x), we can reduce it to the forms (I), (Ii).
We can then easily verify the statement made on page 2-16.

Returning now to (2-51) we observe that fi(t) and f2(t)
appearing in the definitions of v1 (y), v2 (y) for Rey>-lIimagcl/2,
have an irregular singularity at t=O. Then, according to the
preceding discussion, (2-52) and (2--53) with ml provide at least
asymptotic expansions for v!(y) and v2(y) when y- . Referring

to figure (2-!) and to the definitions (2-25) to (2-28), we obtain,
except for a constant factor, the following expansions:

(Y)-(W/a)y (rY() (y)- -a) . -Y)

F(y+3) - y(y+!) (y+2)

r(y) (2) ((5V :Y)(Ib)v() -(,'i) (Y,, (2-59)
r(y+l) ,
1) (2+) (2-60)

( Yy+3 (y+3)(y+4)
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2) y+ (y+l)(Y,2)

All these expressions are valid in the sector -wt/2+e<argy<Tr/2-E.

The inverse factorial series-(ly (2) are at least asyrnpt.o-

tic as y-c4 in the indicated sector. Their coefficients
rhpa

Ma=l,2, can be obtained by both methods mentioned previously for
(3) (4) h iyengpocs nw

an~ the only difference being that the process is now at

least formal. As we shall see, it will not be necessary to find

them explicitly. Hereafter we adopt the above definitions for

V1 (y), v2 (y)i They are simply constant multiples of the integral

forms (2-27),(2-28) of the analytic functions vi(y), v2 (y).

The linear independence of the so obtained solutions vi(y),

v2(y), v3 (y), V (y) can be shown by referring to Nriund's

theorem, or by making use of a general theorem given in reference

17 (p. 360), based upon the behaviour of the solutions vs(Y) (8=
-1,2,3,4) as y; o , which we now know.

We have obtained for v3 (y), v4 (y) two convergent and for

vi(y), v2 (y) two at least asymptotic expansions in terms of

inverse factorial series valid in a half plane limited to the

left. It is a fact of the theory of linear difference equations

that when jyj is large (without any limitation to the left), the

corresponding expansions though not necessarily convergent

any more, are in any case developable asymptotically in series
of the same form (7 pp. 309-318, 17 pp. 457-459). Thus, we have:

v1 (y) = ((2/a)Y l (Y)(62)
y(y+l)(y+2)

1+ 2(y)
v2(Y) = (-1/b) Y (2-63)



2-21

v3'(y) = ,() &L(y)/r(y+-iC/2) ; ie' (2-64)

(4)
4/Y (ii) Yn( (y)±c/ ) ; -=e 1/ 2  , (2.-65)

where:

lim Es (Y) = 0 , s±1,2 (2-66)

- ,8 (s) i~s)

f1 1+ + . +...., s=3,4 (2-67)
jyI y+1ilc/2 (y+1 .ic/2) (y+2;ic/2)

where the upper sign should be used for s± 3, the lower for s-4.

ASYMPTOTIC EXPANSIONS OF RF(z), R2 (z) FO ZJ

We are now in a position to apply these results and Theorems

I an6d VI to obtain the asymptotic expansions of Ri(z), R2 (Z) (for

the latter when 2v+i is not equal to an integer), solutions of

the differential equation (I 1-50). As was stated in the preceding

section, we are looking for the particular solution V(y) of (2-5),

which satisfies the conditions

V(n+a) an for all integers n (2-68)

and where for R1(z) we use a-al-v+l, while for R2 (z) (for non-

Integral values of 2v+l) a=a 2 -v. We have obtained four indepen-

dent solutions of the fourth order difference equation (2-5). Then:

V(y) - Av (y)+Bv 2 (y)+Cv 3 (y)+Dv4 (Y) (2-69)

where A, B, C, D are constajnt. It ie now obvious that with a'=v+i!

or az--v (if 2v+l is not an integer) and the following four initial

conditions:



V (0*a) =1(-0

____________V(y+a) Will satisfy the d-ond-itions, (2-68) for all integral values

Porzmula (1-8), which the coefficients a n satisfy, since for yt-n+o
(n=C1,2,..)the difference equation (2w-5) reduces to the ire-

currence formula (1-8); in fact, (2-5) was derived from (l 8) in
the preceding settion. Thus We have: v (n+qo)=an ,=0po~.

verifying (2m6:8) for such ri's. On the other hand* for y=-w4+cr

(5)yields:

,Using the last three conditions (2-71)-(2-73) we get:

P4 (4+a+V'("4a)= 0.

According to (2-6): p4 -+)a$-vl(~~) ince a=v+l or a=-v,

we see that in either case P4( -4+0)=0 and, consequently, ~-+)

~0(o'=a1 or a~cr2 ). Using (2-5) and V"(-n+a)--O for n--l,2p3p4 we see
also that V7(-n+a)z0 for n=,,...Therefore, VU(n+a)= a for

~ and (2-68) is verified for all integral
Values of no, as requiredo The initial conditions (2-70-(-)

serve at the same time to determine the coefficinrs A, B, C, D

in ;(2"69).
As a consequence of all these results we can write;

R1() =~ az~ z0  V(n4.a)z , where cyl is used for R (z)

2 r~ 2190
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and, when 2v+1 is not an integer, a=-v for R2 (z). Using (2-69)

for *(n+a) we obtain:

Wiz
- A-/) G () -z/a.)n B ("z/ b ) C G 2(n) (z/b)n t

2 nt o
66

+C(iz)a I G(n) (z)nDC-Z G4 (n)( iz)n (2-74)
n--

where G (n, t vs(n .li tn -+( A- , - , 4 4m •0 t-' , "i -b,i t3 .......

t --ii.e# G (n) when considered as functions of W x+iy are
given by:

+e %(w+a)ai  ( ) 1(w )/ -i/a w ~,= --= :_ 1_ _; = .... ... (2.-75)GI~( (w) l (w+ +a2)m-/ w

G2(w)±v2(w a)/(-l/b) w _ l+ 2(w or)_ (-6
16- w+a)G , ---2 - -( -7

I i wfm e (w+) - irn e (w ) =- 0

G3 (w)=v3 (w O)lU)w 2 (w+,)/r(w +a-ic/2) (2-77)

(4)
04 (w) v4(w~cr) /(i-i ) w+C, (w+0 )/r(w+a l+ic/2) (2-78)

(3) (3) (3)

(w+,.) ,w l i--l / + ---- 2 - -.-... , (2-79)

-~ ++1 2.. (w_+ €2¢W+0+2.-C2)
14.- 2 00 . (2-80)

the last expressions in (2-75)-(2-78), as well as (2-79) and
(2-80) being obtained with the use of (2-62)-(2-67). With Re(w+q)
>0, or Rew> -a, (2-79) and (2-80) are convergent series. The
functions G (w) are analytic for all w just as the functions
v (w+a) are. Furthermore, accordin to (2-75)-(2-80), G1(W)and

%2 (w) satisfy all the conditions of Theorem I subject to the
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remarks i), ii), While G'3(w) and G 4(w) satisfy all the conditions

of Theorem V! with p3 ,=0+lm-id/2 and p 4=a+l+ic/2. According to the

ratio test and with the he2.p of (2-70)-04-0) we see that the

first series in (2-74) is convergent for Izi < (&l , the secon~d for

It < 1bIt , while the last two are entire funetions. The first two

can be expanided asymptotically for largo Izil by applying Theorem

lo the last two by Applying Theorem V1. With

= jz 1e~ - <Tr (7,r

we have using Theorem I, I), Ui)

-Ao (-)(,/&'n" for -r(.4,1, arg"a)

or Using (2-75).6

Av (--n+a)
A("Z/&) 02 Gj_(n) (anZ/a) rJ- za < -T<4V

n~o n~l z * # ars(-a) .(-2

Similarly with the use of (2-76):

cr a@ Bv 2 -n+dr)

n=1 Zn #arg(-b) .(2-83)

For the third term In (2-74) we apply Theorem, VI with the

accompanying it remark and with p-a+l-jc/2@, Also here

i-ei / anid so, with (2-81), -Tr/2<arg(Iz), 3nT/24. Thus:

0 oCG 3C-n).
n7 G,(n)iiz) Tr/2(<arg(iz)<u2o

00 CG(-.n)(3)



-t/2(ars i z) r/9 or 4#

According to the theorem in the second expansion we mfust take:

(iZ-ai/2S (aiiic2) in zi'~''~where -it<* farg (i Z)irT

Since in this case "v jwe must take 1(+T/,because only
ta_ t _i WayWa__d have -f/2V4 .f/2 '0 Ao~ntwt

Then we obt ain:

(jZ QMi/_ a.O2 n-'+c2/T 2~ rc/4 . (-4
zWoo

Using (2-.77) and (2-84) we tinally obtain:

n-o nil 3z'

NV fz C 3 - +C ff0/4iz CC, T<7O2-5
n~l zn i (Z) n

For the last term we have: -1=*'iur/2 . -Tr < 4 T, -3Tr/2 arg(-Z)K

4TV/2' p=0+l+ic/2. Then:

D(izaZ DGI,(-n) -31r/2 <arg(-iz)<-f2

n~on=1 (-iz)n or -T<.< 0

N~(~z~aw DG (n) a i

-1r/2 4arg(-z) r/2 or O4-+4Tr

In this case:;~ Zac2 ai,2(nz~~) where

-T(''f rg"i)Tr. With 0 ffT we must take j1'=OM-n/2, resulting

in 9-Tr/2 j4 T/2, in agreement with -Tre,4k~. Thus:



2-26
This result and, (2-78) finally yield:

PO Dv ("n+V)

n~4 n=1 zn

(4),

+De #c/4-izzIcn2l (gznP.-

tv mt (-n+-

n -l zA

Combining (2"-82) ,(2.-83) ,(2-85) and (2-86), Substituting In (2-74)

and making use of (2 -69) we obtain:,

2 nl z ni(i~

~(-n+ar)
-'r +Ce ITc/4+i z ic/2t1,2+
n=l zn() n-= i~

-T rc(-nzz-o')/[ n-c441 +cf0 eGg(-, )(2"87

n~l (,-Iz)n

The ray t=rr is a branch line for R1 (z), RP (Z) and Is exclu-

ded from the above expansions. For large Izi we can draw the

branch lines, starting from z=-a and z -bp along ~T.Also
according to (2 .68)t -(-n+a) 4-a 0, 0~,,,.,s that we

finally obtains: 4

-Tre/4 -Iz -10/2 C1 .f< _R 1z)Je e- z (1+



9 g(4)
+De"tTc/4 *-iz zG.ac/2E1,I n *±0 2-8

nzl (_iz)n

For p1 (z) we use ='V+l, for R,(z) (when 2V+l is not Ant intteger)t

0±-vt

In order to complete the problem we are going next to determim

nie explicitly the coefficients gn g and identity the above

expansions With the previously determined Asymptotic solutions

R3 (z), R4(z). Anticipating the forthcoming proof, we can state

that, in an entirely independent manner, we havte arrived at the

required expansion (1-97) for R1(Z) , R,(z) , in complete Agreement

with the results of the preceding chapter anid, at the same time,

have obtained explicit relations for the precise evaluation of

the coefficients of the linear relations.
(3) -(4)

For g g9 we use the method explained in references
17 (Chapt. XV) and 18 (Chapt. III), mentioned on page 2-16. We

first determine the coefficients hn of the solution 4'3(t) around

t~i of equation (2-42). *1'(t) is given by (2-45). We put t-i-z,

t--z+i and substitute in (2-37)-(2"42):

d 3~
z(z+21) - -L (a+b)(z+i) 2 -6(z~i)+2a]- +[ab(z~i)3-(3a+5b)(s+i)+

dz d5

+a .i6-V(V+l)]d!lI -E-"2ab(Z+i)+a+3b-(a+b)v(v+))'d -
d dz

-abv(v+1)1fz) - 0 .(2-89)

000

3l n~o
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0

zn [a&+b)z2+2;[i (a+b,-3Jz+69-6ij+ 7- (n+,O) (n+p.1) h_Ztabz(3a+5bo.

m2ialb)z2 +[ ac+6mv (v+!)mi (3a+5b)]1 4.2+ (.n ~hzl2&b z +f(&+b) v (v+i)

-m&a-3b+2Iab~z2~ 2: bjzabv+) 3 2.zhtzn) 0

where:

* ,a+b) z2+2 i (a+b) m3)z~cmm611+(n+O) (n+O-i) jabz% 3-3a+5bt2iab) z2+

mmabv(v.1) z3 = f o(n+O)+f1 (n+p) z+f2 (nP)z s2+of 3(n+o) z
3

where:

f ON) =x(x-li) (x-2) "(x3)c+61) (2'90)

fr2 (x)=x-(a+b)(x-1)(x-2)-(3a+5b-2iab) (x-1).(a+b)v(v+l)-

-ab2iab] (2m-92)

f3 (X)-ab~x(xm-l)+2x-v(v+l)]=ab(x-v) (xvi.) .(-3

Recurrence relation:

3
f n+ w)I h-n 0 ; 110= 1 h v J=l,2,..* .. (2m94)

Indicial equation: f ~ ,with
0

roolts =0,1,2 and 0 wic/2. Thus, as In (2"45)9 we have:

p3t)= twImic/2 q(t-i) (2-m95)
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q(t-i) h (_2n-96)

We can also write (2494) in the following f orm:

-m(n- Inm 0 h-m1 0 h6 - 2-7

P (t) =fl(-c2=i~-c2 (n-2mi/) "ic/i/2) ( 2t-985+3)
2

c(a+i)-v(v+l)] (-99

IF 2(n)=f 2 (zl-±c/2-2) =m-(n-2-ic/2) C (a+b) (nm-ic/2-2) 2 + 2b(1-ia) '

From (L547),(2"95) (2-96) we obtain:

Where q(t-i) has a regular singularity at t-0. Putting t7-iz we get:

w3(y= ~f~z~ ~ z ,Rey >0, (2-102)

where L,, the mapping of the path t in figure (2-2), is shown In-4a g -
figure (2-) The dotted lines are the branch lines of q[(z~-!)].

We put:.

1+ 1--i)J= )n (2-103)

n=1! n--o

where:

*Tr/4 +
d h)-n(- 1 (2-104)



Then, according to references 17 (Chapt. XV) and 18 (Chapt., 11),
after Substitution in (2-102) and term by term integration# we
obtain for Roy> 0:

V Y- ( nc/ OL

F +1ic2 rjy iic/2

r(y+n+1mi c/2) fl-id/2)

The expression in brackets is a constant coefficient.. Referring
to (2f-54),(2"--,6) we notice that as v 3 (y) =w3(y)/r(y) we chose:

(3)
3(.V) iQ )/(.-iC/2 where:

(3)) (3)M
(y) +1c/ (y-i2)(+i/)

r(n.1m--c/2)ry+l-ic/2) -i~(2+1-id/2)

r~yn+1ic/) r1-i/2) r(10-c/2) (y+1-ic/2)

+ - (-)2 2h T(3+1-I/2) ...

the series being convergent for Rey> 0. The equation also shows
that:

=(-1)1h% IF(n+ 1 -ic/ -2 (2-105)

Substituting (2"105) in (2-97) we obtain:

3



2-31
where:

Fgn)
0 (n-ic /2) (n-icl/2) tn-2-ic/2)

......... n-c......(5.a+3b)+Ti()=-i(n'--c/2) (n- .-ic/2) i(,ii 2,n (a3).]

,c(lia) +iv(v+1) (2-108)
TFn) (n)~=~ _,__.. .. __ .. J. . . -

n-2-(/2

-(a+b)v(v+I) (2-109)

T3 (n)=i73(n)=iab(n-3-v-ic/2) (n2+v-c/2)

=s (n-2"ic/2) (n-3-46/2) -mv~vi (V-mmo

Next, we are going to prove that, when a, b are real:

(4) -(3)

so that, looking at (2-56),(2-57) we should also have:

(4) (3
f(Y) =2 (-112)

Furthermore, since F(4 1-ic/2)=F(y+l+ic/2) and

i- e -e - (-I)y, looking at (2-54)
and (2-55) we see that also we have:

4 (Y) -3(66) . 213

This relation holds not only for Rey> 0 but also for any y,
because in (2-50), which provides the analytic continuation of
v3(Y) and v4(Y) in the plane Rey<0, the coefficients p (y) (n=O,
1,2,3,4) are polynomials in y with real coefficients.

In order to prove (2-111) we look at the differential equa-
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tion (2-42) satisfied by ~'(t) around t =i and 't)aon

-i. t is an equation with real polynomfial coefficients and its

two singular points t-iand t 4=-i are complex conjugates with
exponients :0-c/= 4  it is then easy to s'ee that *I4 (t):
which means that fn!hn C 8ee (2-45) and (2-46)] Pollowins the

steps leading to (2-105) for f~ ewudfind6) m fn#
r(n+l~ic/2)weoudfn

rul+ic/2)tht,4-iio

(2-111) follows at ones.

A faster but not as rigorous way, is to observe that (2"-12)

and (P"1i3) hold at least for y;m oo as equations (2-54) and

(25)show; since the difference equation (2-5) has -real poly-
nomial coefficients, the relations Should hold for All y

turning to (21-106) and (2-110) we can find: (3 1 and

TI(l)

Thus, the corresponding series expansion in (2-88) can be written:

&./ + zi / r !c(a4.3bY+i4v(v+l).2'c 1 > R ((-l)
0 z L 8- z n= (iz)n

Equation (1-94) defines R 3 (z) as follows:

iz I.C/2 (c/2i)(c/21!+l)-v(v+1) -cb1
R3(z~v~21 z zC _

eiZzc2 1  tc(a+e3b)+14v(v+l)+2c ~+..

8 Z - -

that is, the expression (2w!14) is8 si.mply: Ce fl~c/4 R3 (Z). An
analogous statement holds for R4 (z); we finally conclude that
(2"88) can be written:



223Ri (z) , A4 R4 (z) , < , <

,J A3 R3(z) A,4 f 4(z) , = 0 , (2-115)

where:
A4 -D e t / 4 , A3  c e'/ . (-6)

For R1 (z) we use a=v+1 throughout, for R,(z) (when 2v+1 is not

an integer) d=-v throughout.

Since for real a, b, z, Ri(z) are real and a(z)- N4 (z), ye
2

must have A3  A4 , Or from (2-116):

c =D ; fo real a,b . (-117)

a fact that will also be verified in the process of determining

these coefficients.

DETMINATION OF THE COEFFICIENTS OF THE LINEAR RELATIONS

In view of (2-116), our problem is the evaluation of the

coefficients C and D of (2-69). Referring to (2-70)-(2-73) we

have*.

Av 1 (3+0r) +Bv2 (-3+cr) +Cv3 (-3+0) +Dv4 (i-3+o) 0

Av1 (-2+a) +Bv2 (-2+o') +Cv 3 (--2+-)+Dv 4 (-2+a) 0

Av 1 (-+a)+Bv 2 (-l+a)+Cv 3 (-l+a)+DV4 (-l+a) = 0

Avl(0)+Bv2 (c)+Cv 3 (a)+Dv 4 (0) = 1

Solvin8 for A, B, C, D we obtain:
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(4) (4) (4) (4)

A=P 4 ) = 4CP3 0 3) (3 (2-118)

(4)
ere s() (,2,3,4) are the crfactors of the last row of the

determinant P(y) divided by P(y) and where:

vi(y) v2 (y) V3(y) v4 (y)

V (y+i) v2 (y+i) v3 (y1) v (Y+i)
-W vi(Y+i2) v (y+0) v(y2v(y)_____

2 3 (Y2) v4(y~g)

v1(y+3) v2 (y+3) v3 (y+3) v4 (y+ )

P(y) is the Casoratils determinant (17 chapt. XI1, 18 Chapt. I)
for the four particular solutions v (y) (s=1,2,3,4) of (2-5). It

satisfies the following difference equation or the first order

(Heymann' s theorem) t

Payi) - 0 - 1,(2-120)
P(y) P4 (y) ab(y+3-v) (y+4+v)

whose solution is given by (17 pp. 327-328):

W(y)
P(y) (1/ab) y Y (2-121)r(y+3mv) r(y+4+v)

where (y) is, in general, an arbitrary periodic function of y

with peri od 1. It can be verified immediately that (2-121)

satisfies (2-120). Since we know how v (y) (s41,2,3,4) behave as

y-o we can find the form of -(y) corresponding to the parti-

cular set formed by these four solutions. It turns out to be 4

constant. As yo we use the expressions (2-54)-(2-61) into

(2-119) to obtain:

P(y) (1 -/ 1 yY 4r_~-oa ~~~c2



-1/a -1/bi/ y l o/ ) i/ y l

(-/a2 (-/b 2  0 0
*(1a3 (-..1/b) 3  0 0

In the deter-jinant subtract the lat eolu=n frofm the third arid
Use the difterence as the new third columni without changing the
value of the determinant., The third dolumn becomes:

0

0
0

sotht

P(y) '''(/b~ i

11 0 1
-1/ 1./b 1 -i/(Y+l+ic/2) -

(/a2 (-1/b) 2 0 0
(-1/a)3 (-1/,b) 3 0 0

(1/ab) Y+3 Zic -_____ 1 __(y+3i-v) (y+4+v)
y3  F(Y+3 -v )F( y*4+v) -F( y+2-ic/2) r(Y+2+i o/2)

but (7 Chapt. VIII, 17 PP. 254-255)9

F(y+p) Yo(2-22

and this holds as y-w-oa In the sector -.Tr+<ar~y<r..6. Applying
this to the last expreasion, we obtain:

1 F(y+3"v) F(y+4+v)

y3 1(Y+2t-Ic/2)fly+2+io/R) YA y0 =
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so t ha t

P()~-- (1/ab) Y2i ________

YjP Cab) 3 r(Y+3-v)r(Y+4+v)
Comari~ wth 2-21) we see that W(y) ic a constant.

So finally: (Ab)3

?(y) =(1/ab)Y+3  2ic (-j-3)
______________r-(Y+3- mv) r(y*4+v) 

______

We next defin~e the so-called multipliers (17 pp. 372-374)
N C(Y) (S Iv2,,4) of the solutionsa v s(y) Of (2-5) by:

N (y) sa(y+)4dy

H~ere P (Y) =1 and from (2"120) we obtain: / 4 y=ty1/~)

theref ore:

NB Cy) =ay1 P(Y+i.)/p.y

Remembering the definition of 4,L(y) (immediately after(-1))

we see that pL() P(y+4.) a(VI P - re aim-ply the cofactors of the last
row of Casorati's determinant P(y+l). We have explicitly:

-1 ~V2(y~l) v3 (y+i) v 4(y+i)N! (.) =v (y+2) v-(y+2) v4(Y.2) (2-124)P(y) vv(y+()+v) y.3

__2_ 1(l v3 (Y+3) v4 (Y+l)
N 2 ( y ) ~ ( y ) v 1 ( Y : 2 ) v ( y ) v ( y )( 2 1 5

v3(y+') v4(y+3)

v1 (y+1) v 2(y+l) v4(y+1)
N (y) =-v(Y+2) v (y+2) v (y+2) (2-126)

P I)V1 (Y+3) V2(y.3) v4(y+3)
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V! (Y+1) v (yv+!) v (Y~i)
N4(y) ~ v1 (y+2) v (Y+2) v3-(Y+2) (227

V4y (Y)+3 2(y) v3(yt3

In the present case, where p (Y) el, Ny)(=90Oare simply

the negatives of the cofactors of the first row of ?(y) divided

by P(y). The original definition isoo

________________ =P 4(-1)N(Y- ay42v(y+3+v)N(y) Ty28

Us ing (2-118) we can express A, B, C, D as follows@-

A ab (y+3-v) (y+4+,,) N 1 (Y) ~y a(2-129q)

B = ab(y+3 -v) (Y+4+v) N -(Y)]. 4 a(-3)

C = ab(y+3m-v) (y+4+v)N 3 (Wy)]e44+(-11

D = ab(y+3i-v)(y+4+v)N4()]y.-4+, 212

For the expaso of R1 (z) we use r=V+-1, for that of R(Z), whe n

2v+1 is not an integer, we use 0=-v.

Working as before for P(y) we can find how N (y)(51,,)
behave as y-qo Using (2-54)-(2-61), (2-122) and (2-123) we

find from (2-124):-

N1() -r(y+3-v) [F(y+i4+v) (AD) Y 3 (t-l/b) Y~1

Yrv; O 2iqy r[(y+2-ic/2) r(y+2+ic/2)

* -1/b i/(y+2"Ic/2) -i/(y+2+ic/2)
(-/b2  0 0

or, subtracting the last column in the determinant from the

second and using it as the now second column:
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r(yv+3-v)r(y+4+v) (ab)y+ 3 (,-l/b)Y~l

6i/b 1-/(+ic)

Or/b
2  0 0

Y F (2-133)

Similarly starting from (2-125S) Ws find that,

Ny -(bY? 
(2-134)

Starting fromf (2-126 we Obtain:-

r(y+3-mv) r(y+4+v) (ab) +3 ,(-i/ab)~~ 1-l I I

2icy 4 r(y+2.ic/2) -1/a ]~

arnd by application of -(2-122) we can find the following two,

asymptotically equivalent, expressions:

N (y) - F (y+.v)yv--2-c/2,'-

2v 1--- r(y,4+v)-v"3i!c/2 .(2-135)

Similarly:

4~(y) ' yr(Y.,Y-)yv2i/, lyr(,y++v)y 6v3+io/2 (-16
2 2

The Adloint Difference Equation: It is a well-known fact

that the multipliers N (Y) (S-l,2,3,4) are independent solution$
s

of the difference equation adjoint to (2I-5), i.e. they satisfy
(17 PP. 372-3749 18 Ohapt. I)t
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4
-o P(y+4-m)(Y+i4-mm) =0

q 4 (Y)N(y+4)+q3 (y)N(y.3)+qg(y)N(y.2),q (yr)N(y.1).

eq 0 (y)N(Y) =0,(2-137)

Where:

~4(y)±PO(Y+4) =1 (2-138)

q(Y) =p!(Y+3) 2a (2-139)

qg(y)=p2(Y+2)=m(y+4) (y.3)+a2-v(v+i)-

±(Y+2)(y+3)+2(y+2).a 2 +2"V(V+l) (2-140)

q1 (y)=#p3 (Y.1)= (a+b) (y+1) (Y+2) +(5a+3b) (y+1) +3.

+(a~bC6-v~+1))(2-141)

q o(y)=PA(y)=ab(y3-V) (y+4+v)=abty(y+1).6y+12.v(v.1)] (2-149)

Applying the method of Laplace's transforma1tion as before, we
form the functions:

Y2 t) t24(a+b)tgab =(t+a)(t+b)

yt) 2 +(5a+3b)t+6ab

0(0 t4+24t3+Ca+2.v(v+l)t2+[3c+(agb)(6..v(v+l)))t+abi[l2v(v,1)J

The corresponding differential equation for 1'(t) Li

and has regular singular points at t-01 t7--a, tmeb and an IrrOgu-
lar singularity at tmea. Indiolal1 equation around t=01
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&bpp-.)-.ab~abl2~~v+)J 0 With roots Pl= 4*V, p3-v.

Since v is positive, for ROY> Vm-3 the corresponding I(lt0t) tt

is Zero f or any solution Of (2w-143). The indicial equation around

t±-b is:. 2b2- (5a+3b)b+6ab
with roots 0 and -2±l

-0. 'There exists one solutiton * 2 (t) 1+d 1(t+ +d 2 (t+0)2+....*

at (2"143) and, correspondingly, a Solution of (2-137) in the form:

N~y = ~f~Y V(t)dt , analytic for Rey> v-3

'The path t is shown in figure (2e-4). As in (2-20), it can easily

be shown that 1 (42t) &,b= 0. According to (2"52) i(2"53),
N10rlund's theorem and the statement on page 2-20,w anepn

th aov-epression, as yrpo as follows:

N(y) y~- (smb) y) I-40 (-b)y(()/y;5r F(y+l)
Comparing with (2-134) we see that the above solution is propor-
tional to N2 (y).

Similarly, the other solution, corresponding to, te gular

point t=-a of (2-143), would be identified as proportional to
Ni(y). We are -interested, however, only in the solutIons N (y)

an 4 (y) of (2-137), on which C and D depend. The coefficients
At B do not appear in the asymptotic expansions of R '(z) , R (Z).

We will find N (y) and N(y exliity. We put:

N(y) = r(y+4+v) M(Y).(21)

Substituting in (2-137) we obtain:

Q4 (y)14(y4.4).q 3 (Y)M(Y+3) +%(Y)M(Y+2) .q 1 (y)XL(y1) +
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where, with the Use of (2w-l38)m(2"142), we h&Ve:*

44 (y)=q 4 (y)r(-y+8.v)/'r(y+s+v) (y+4) (y.5) (y-+6)+3(+)y4y5)

+3(v.1) (v+2) (y.4)+(v+i) (v+2) (v+3) (2-146)

+(v+2)v.) (2-147)

+Ea2.6-v(v -1)] (y+2)+(v+i3)Ca922v (v+1)) (2-148)

*(a+b)[6-v(v.1)J (49

Q0 '(y)=aby+ab(3-v) (2"150)

Applying the method of Laplace's transformation we form the

functions:

~3(t)=-t4+t2=t2(t2+l) (2m451)

+2(t)=3v+)+(v+ v+)2(')t (2"152)

+(5a+3b) t+ab (2-153)

40 (t)=(v+1)(v+2) (v+3)t4+2a(v.2) (v+3)t (v3)a2 +g2-V(V+1))t2+

*C3c+(a+b) (6-pv(v+l))]t+ab(3-v) (2"154)

The corresponding differential equation for lr(t) and expression

I(*Pt) are:
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t2(t +1(2-155)~

modt dt t, m.

4"(t)ty+2 
3 (t) 4(t

_____________ + +(Y+2) (Y+1) +3 (t)+2 (Y+2) tf '-(t) +t *t]~'(t) tY!lt+t) +

Equation (2-155) has three regular singularities at t -1, t=i
t~vo and an irregular singularity at t=fO. For its soilutions

around t± O we put:6 *t)±e I ant , anaban
n-o

4,I)tem/tZ (n+ ftP- - -M/t~ -2 - (2o7

n o n--o
21()/ 9pt~ (2-158

n~o n

n ~ nnoo

Subsituigint (215 and elmia2- hecmmn5ato 8)/t

(t2i) ~(np)(n-) npm)(n0-2)ta 2 3 n 3nm (+-) nt0-2)
n=o n

+3 ~(n0-)at-n 0-a n -J-3oi . *2t-4.(+3t+a6
zv-o n= 0
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*C Z(n+ 0) (110-1)~ atft1-"2mi (n+.-1) antn+rng ator 1]+ 3(V+!)

n- o

_____________ t2.C[ 0+(&+b) (6"V (vl)]t+b (3-v.03 a'tf = 0 ____

n=o

The lowest power of t in this expression is t S quating the

coefticients of' t and to to 0 we obtain:

t1  im3 (a b 2 
0 abm%= 0 with roots M=O m2 -a m2 -b

to I-Am 3
1+3m2 (0-2) d- (&+b) m2 aim-(V+3) m 2 d+2m(a+b) (0-l)ao -abina 1

-&(5a.3b)ma0+abP*,"ab (3-&-v) 0 at 0 ,or

(3-V-9)m2 E(b)-)-abmab+v) 0

For m -0 we get: Or 3"v

Fo 2= :32 " )a(21 5+bbO+-)0 or 02- v+2.

For m3 -b :(30 3 -v-9)b-2(a+b)(0 3 -l!)+5a+3b+L( 03+v -3) -0, or Orv+4.

Thus, three normal asymptotic solutions around t=O are obtained:

W t n l

Re(-b/b/t and fo ay wIhve

li -*()=i l t 1M t+ 1()= 0, for s=IIZII
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If we further restrict y to, values for which Re(y+3-v)> 0, or
Rey> v--3, we are going to have:,

lim ty*(0mt.0+4ri) tCt)2 11t 0

Therefore, f or any path t in the te-plane, s tarting and ending at
t=0O along rays satisfying the condi tions Re (-a/t) <0, Re ( -b/t) .40,
while Rey v-3, we are going to have I (*,t)Ie 0 for any solution
*(t) of (gm-l55). This is easily verified by looking at (2-156),
(2l~)(1 ls4). Further.r-'e, the same result is, still valid,,, If

the path approaches t-=O along either of the two limiting rays:

Re(ma/t)±0O, Re(-b/0t)4 0 or ~e-/) ,Re(mb/t)=09 if y is
restricted by Rey>mAx(v-3,-vm2), a condition that reduces to the
previous one, Rey>v-3, if v~l/2, Again, a look at (-5)

(2-154), (2-1-56) and (2-1-57)m-(2-l59) verifies this statement
Immediately. As before, these observations will serve to fix the

Path of integration. in the t-plane.

The indicial equation' of (2-155) around t 4 A is:

)(02) t5t~i ItjOU1)= 0 with roots 0, 1 and

Indicial equation around t3--': (-)(O-2) -[ (t =

=0 with roots 0, 1 and 03 v+2+ic/2,.

There exist two solutions of (2-155) in the form:

14 (t-i) d nt v2c/E+d(t-in ti~ (2-160)
n--l

1'(~)=(t+i)v+2+ic/2[+ P~ (t+i)n) It+iI~l (2-161)
3 n

and, correspondingly, two solutions for N(y) in the form:

F( y+4+v(21)
N ( 4 ) (Y) = fr d0 4 V)tyr- (t"j) (2-62
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u(3)(yy)4+) ...... (t~i) dt 2 i )(3)2tri ft 3- dt

where the possible paths of integration are showr in figure (2-5).

The so defined functions are analytic for Rey>v -3 and t3, 14 as

in figure (2-5), or for Rey> max(v-3,-v-2) and 93 and/or t4

tangent to the limiting rays as t.O. For v>l/2 both cases are

equivalent.- As,-rhP w- we can eMadA thA.-aboh fntosa c~e

in the following forms.

r(y+4+v)F(y) X(4)

X e4) (Y~~o d~~ +-c2 y++-

Jd0 y r(y,4+v)y fv + L3/2

r(y+4+v)Fr(y) ____

Yj~po' 0 Y+Vv+3+ic/2
co0 (-i) y r(y+0)y3r ic/"

Comparing with (2-135),(2-136) we see that the Particular
functions N4 (y) and N3 (y) we are looking for, are obtained if we

take' do= co= 1/2 , i.e.

r(y+4+v) 1 fty.!r(t~i)

((y+v) l , t (t+i) dt • (2-165)

They are analytic functions of y for Rey>v-3 and e3' LA as in
figure (2-5), or for Rey>max(v-3,-v-2) in the limiting case,
mentioned above. Their continuation to the left is provided by

the difference equation (2-137) itself, ioe. by:

N (y) .- (y+4) +2aN (y+3) +q (y)NY(y+2) +ab(y+3-v) (y+4+v)
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+q1 (y)N(,Y+i-))216

Therefore, they have simple poles at the points:

y = v-3&n and y -4"fn s nt = 0,lp2,... (2-267)

Another remark can be made at this Point: When Re$ _V+2"

-wIffag/2 > 4- and/or Re,04 v+2+Imagc/2 > -1, the integration aroun d

the Small circles surrounding the points -1 and/or i, in ?( and/or

14 Yields 0, as the radius Of the circles is allowed to go to 0.
We can then replace the corresponding paths by integrations along

the lines e - and/or I' as Shown in figure (2-6). The only change

In the expressions (2"164),(2"165) for N 4(y), X3(Y) amounts to a
appropriate constant factor in front, easily deemndnec

case.

Explicit solutions of (2-137) for XN3(y) and XN4(y) can be

found by the method used previously to obtain explicitly the

Solution v 3 (y) of the difference equation (2-5). The steps are
exactly the Same. The factorial series obtained for V3()i

convergent for Rey> 0. in the Present case the Serie obaie

are at least asymptotic and the process is at least formal. We

Start from the defining integral representations (2-164)9(2-165)

and proceed to obtain explicitly the series developments (2-160)

and (2-161) for Y14 t-i!) and * 3 (t+i), which satisfy the differen-
tial equation (2-155) with coefficients S(t) given by (2-151)"
(2m.l50). The final results are as follows:

N4 (y) -+~ -~++vry T (y) (2-468)
2r(y+v+3;ic/2)

d d
TVy) 1+ + _ -- ~---~-*.* .(2-169)

y~v+3ic!/2 (y+v+3+"ic/2) (y+4+v+_ic/2)

Recurrence formula for the coefficients Cn



dn Wdri(X)dnir.2 2(X)dn2 +T3(x)dn +T (x)d W+r5 (x)d 5+

6 (x)d.6) ; do= 1 d=1,2,3,.... (2-70)
X n v~ic/2 (2-171)

ri(x)lx 2-[i~vili(a'3b) ]x 4v2+8-aci(av*3c) (2-172)

_r(x) -2x 3 C39v i2i(3b47a41>32- 1i 2*81v+89+ab-m3 a -i(9ba(i!6v__

+39))jx+2v3+10v2 (12-a2rab)v-3ac ih (3ab) v+(ila+b)v.3c] (2-173)

. 3(x)±x40x3-a56v2228i(b-i9a)Jx2 C3 (1iv 2.85v+172-a2)±2i(3b.

-a(1v 5O)) ]x-6v3-65v+(9a2- 45)v9a-330if (7a+b)v+(55&ab)v+

+108a-8bl (2-174)

r4 (x) =x(x-i)(x-v-5)E-20x2+(24v+122il0a)x+a2-7v2-67v-

-174±i2a(3v+6)] (2-175)

s(X)=x(x-l) (x-2) (x-v-=6) (x-v-5) (7x-4v-25+2ia) (2-176)

Throughout the above relations the upper sign is used for N (y),
the lower for N3 (y).

Different, but equivalent, expansions for N (y), N3 (y) can
be found by emPloyine Boole's operational method fr so3vin

difference equations with rational coefficients, as explained in
reference 17 (Chapt. XIV pp. 434-461). It is essentially the me-
thod of undetermined coefficients, completely analogous to the
method of Frobenius for differential equations. The method is
tedius and lengthy but straightforward. The final results are as
fo!!ows:



.(+i)Y r(y+4+v)r(y.3"v)
N4 (y)= - Ty) (-178)

32 r-(y+6Tica/2)

y+6Tic/2 (y+6ic/2) (y+71.cd/2)

Recurrence formfula for the coefficients d
n

d 2n [d,,.lf4(x)d ,-f(x).a t -f(x)4d.d4 1 nx+d,-5f,(~

d0 1 d 0 ,j123.. 210

f-I XXl 2-v- A±c2) (x2v2-181) (+2&-

fl,(W)M2(x"l) (X-2) (X+2V) (X+2V-1) (3+3V-3-ia) (2-183)

f 2(Wx)=(x-2) (x.2v-.) Cl!4x 2 +4 (7V"lO+Z2a) X+2v2i..42+3..a 2+

f3 (x)=1!6x 3 +[48v-90+i(lla..b) x2422Ov2-94v+85-a2 i( (fla-b) (v-2)+

+b) Jx+8v3 _8&v 2 g(184-2a2) v+4a2-108-1( 8a*2.('7b-47a) v+

+44a-8b) (2-185)

t4 (x)=9x2 18-923-~+v-404v.42mac1( 2(3a-b) v.

+~7bwl5a] (2-186)

The sign convention is the same.
The inverse factorial series In all these expressions are at

least asymptotic for large I. it is also obvious that with real
a, b' ~ ~ Then: N (y) 1~4(3"), or for real y: 3 y 4 y)

Referring to (2-131) (243~2) and with y--ar4 v-3 for R1(W), y=-mvq4
for R2(z) (when 2v+1 is not an integer) both of which are real
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values, we conclude that: C ±m , a fact Which was inferred pro-

viously, equation (2-117), through different considerations.

It may also be pointed out that different expansions for

N4 (y), N3 (y) can be obtained, which may prove better, from the

computational point of vieW, depending on the particular values

of a and b under consideration, if in (2-137) we use the general

substitution:

N(y) = (z+h) M(z) , z y+r(28)

and solve for M(z), employing either of the above methods. The
parameters h and r can be chosen conveniently in each case so as

to optimize, from the computational point of view, the expansions

obtained. Both expansions, given explicitly above, were used for

the computations in Chapter 3, PART I, yielding the same values

for C and D. The former proved better in certain cases. Others,

based on the change of variable (2"-87), were also used for

comparison and cheok on the results.

The evaluation of C and D is based on equations (2-131),

(2-132), with y=a-4=v-3 for R1 (z), ya-4=-*v*4 for R2 (z), when,

in the latter case, 2v+l is not equal to a positive integer. In

general, these values will not be useful for direct evaluation of

N(v-3) and N(-v-4). However, we can evaluate N4 (y), N3 (y) at y,

y l, Y+2, y+3, where y is adequately large and then use the
difference equation (2-166) itself to obtain values for N(y-1),

N(y-2) etc., up to N(v-3) and N(-v-4).

All these considerations can be expressed in another more
compact and general form, which will also prove necessary in the

next section, where the case of integral values for 2v+1 is

investigated.
Instead of the initial conditions (2-70)-(2-73), we make use

of the general ones given in (2-68): -(n+q) = an for all integers

n. It has been proved that they are equivalent to the four

expressed by (2-70)-(2-73). The function V(y) Is defined in (2-69).



Star'ting from (2i-119), the definition of Casorati's determina nto
we multiply the first, second, third and fourth colutns by A, So
C, D, respectively, add and use the sum as the now fourth column.
Applying (2-69) we obtain:-

v! (2-188)vD V-(y+2) v (7+2) v3(I2 v(+2

v1 (,y+3) v2(y+3) V3(y+i3) V"(y+3)

This, incidentally, Shows that the constant D is equal to
the constant ratio of two of Casorati's determinants of the
difference equation (2-5): D =P 4 (Y)/P(y), where P(y) eorrespOndS
to the four particular and independent solutions v-(y)j m sl234
of (2&i-), while P 4(y) corr'esponds to the set Of solutions vSL
s=l,2,3 and v4-(y) of (25.From (2-188) we obtain:

V(+)V1 (y) v,(Yi) vI(ya) - +2
Pvy 21 " v(y+2) v 3(y+') Py

*v(y 1) v(3r+2) v3 (y+l) v 1 yi2 v2(y2) v3 y))

v1(y) v (Y+) v (y) "(y+) v1 (ys) v2(y+) V3(.)

- Y 1 (y,+2) v 2(y+2) v 3(y+2) .(2 -189)
vy v1(Y+3) V2(Y+3) v3 (y+3)

We call ( y), ( 0 ,() the four terms of (__9. aig useO
of (2-177) and (2"l20), i.e. P(y+l) P (y)/p 4(y)o we have:

(a)-4Cv(y*3)/P(Y) ]P(y-1)N4(y"!-1)=f(y+3)p 4(y-1)N4(yl) (40

(~) "~()N 4 () .(2-191)

For (0) we observe that for s=1#293 we have from (2-5):
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v5(y~~~~~~3) =~~~~ -py1)ey)p(y)vy++2s(Y-)+vs (Y-l)p(~

Thean we substitute into the last row of the determinant in(0

and break it up into four deterrninat with the samfe upper two

rowso as in (0,and with last rows containitig each Of the four

terms in the above expansion, respectively6 The seonod and third

of these determinants vanish because they have two proportional
POWEI. There remainsit

;vY+2) iQ) v2(yi) v 3(y.) V (.+2

P(y) P4(Y-1) v1(Y+2) v2(yV+2) V3(yi.)' ?(Y) P4(y-1)

v 1 (y) v() v 3 (Y)
vI(y.1) v 2 (Y+l) v 3 (Y+1)

v I(Y-1i) v 2 (y-il) v3(y1

Interchanging first and third rows, then second and third,, in

the last determinant, we finally obtain:

V(y+2) p (Y-1) ~(y.2 + 2 -)N(-)
- ~-1) N 4 (y-l) + Py2N(-

P(y) P4(y-1) P (y) P4 (y-1)

- (y+2)p (yt-!)N (y-l)4V(y+2)P4 (y-2)N 4(y-2) .(2-192)

Simnilarly for (y) we substitute the elements of the first
row using:

vy) wpyv (y+4)+p(yv(y+3') p2(y)v8 (y+2)+2av8(y+1)j,

with s=1,2,3. We finally obtain:

('r) 4%,"'! v1(y+i2) v 2(y+2) v;(y+2)
P(y) v,(y+3) v2(Y+3) v3 (y+3) P(y)



*v1(y+2) v2(y+i.) v3(y+2) =-p 4 y)Y.1N 4 y.)

v1y.) v _(.V+3) V3 (Y+3) P(y)

- 2P~N(y)- V-ylN(~)&(YlI)N4 Y (2-493)
-P ()40m- (+Y Y1-(y)

Substituting (gm-19-0) -(2-193) into (2"189), we finally obtain:

D i(y+20(yWI 4 (y2)&C"(y+) 4(y+')+(2)3 YJ Y)

For yz-nha and relation (2-68): -0V*(nv) man for all n, we obtain:
,n

D in 2 n-2 ) : n+ (n + or) +a+ 2P3 (n -1 +0))M4(n1l+0)-

-;1&n+2& an+1 ]N4 (n+0) &an+iN 4(n+i+d) .(29)

For an appropriately large value of n, the four values of

N(yv) appearing in (2-195) an be evaluated. As a check, we

evaluate D using (2-19 5) for 10 or 12 values of n, either conse-

cutive pr not. For nm-3 we simply get: D=p4 (a-4)N 4 (am4), as in

(2-132). Q 1s given by the same, equation (2-195)9 If N3 (y) is

substituted in place of N 4 (yV)'

2v4.l IS EQUAL TO AN INTEGER

Asymptotic Expansion of R,,(z)- for Large IzI-: For the coot-

ficients B of 'the logarithmic solution R (z) we obtaized in
m2

Chapter 1, PART 11, the recurrence formula:

3mo (m Ml)Br fI m2(m+v)+Bn..f (M+V"-1) +Bn..f (v-2) +B3  1f4 (m+v-)

- mo(m+v+1) +a3 1F1 (m4v) +a3.2F2 gy .(-5
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The bn's are connected to the Br's throught

n M 2v++m I b v+lM Bm . (1-54)

The initial conditions for these formulas are found from (i-53)
and (1-54) to bre:

B 2 4- Bi2 3 = B 2 2 = 0 , B 2 Vi- b0 as in (1-51) . (2-196)

With BO b2v+i= 0 and bas in (i-51), these conditions can be

replaced by the equivalent set:

BO=0 Bi b2 v= bcd2 , B 2 = b 2v~i± bo0 v~

B-b ±bd-B-3± 2v.2 0 (2197)

where bO and d2v, d2v.i, d2v.2 are definite numbers defined

previously, equation (1-50). it is easily checked that (2-197)
lead to the values (2-196) through the difference equation (1-55)
and the special value of bo in (1-51).

We next write m+4 for m in (1-55). Remembering from (2-68)

and (2"69) that in this case am= v(m~v+l) we obtain:

fo(m~v 5)Bm+4+fi(m+v+ 4)Bm 3 f2 (m+v+3)Bm +2f3 (m+v+2)Bm +
32 23 -m~4 +l

f4(m+v+l )Bm= F (m+v+5)' (m+v+5) +F! (mnv+4)fl(m+v+4)

+F2 ( m+v + 3) • (2-198)

We introduce at this point in place of m+v~l the general variable

y and in place of Bm the function v(y) such that:

v(m+v !) = Bm for all inte~ra1 values of m. (2-199)

Equation (2-198) transforms into!

4 2
Zfm(y+4-m)v(y+4-m) = ZFM(y+4-m)V(y+4-m)
ros mo
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This equation for y= m+v+i, m being an integer, readily reduces

to (2-198), if (2-!99) is also used. We write it finally as

follows :

p4(y)v(y+4)+p3 (y)V(y+3)L+p2(Y)V(Y+2)+p,(Y)V(Y+1)+po(Y)V(Y) "

Sq2 (y) v (y+4)+q 1(y)v-,(y+3)+qor(y)v (y+2) , (2"200)

wi__ here, with the use of (l-38)-(l-45), we have:

p4 (y)-f 0 (y+4)±ab[(y) (y+3)-v(V lL) J=ab (y ti3v) (y+4+v) (2-20)

p 3 (y) =f1 ( y +3 ) =(4.b) ( y'i3) (y+ 2 ) 0( y+3 )-=(a=+b) V( v+l) ( 2-202 )

P2(y)=f2 (y+2)=(y2) (y+l) a
2 -v(vl) (2-20)

p (y) f3 (y~l) =2a (2-204)

p(y) f4 (y) 1 (2-205)

q (Y t~pdP- (y)
42 y)  4)# 2 ab 2(y+4)-1]= - d-(y' (2-206)20 dy

q, (y) =Fl (y 3) =-(ab) 2 (y+3) -11 -c=-2 (a+b) (y+3) +2b=

dp- (y)d 3 -y) -(2--207)

dy
dp t(y)

q.(y)=F2 (y+2)=-2(y+2)+1-.2y-3= dp y (2-208)
0 2 dy

The last expressions for q s(y) as -[dp 2 (y)/dy] , s=O,1,2 are

found from (2-2010-(2-203) by differentiation. In (2--200) the

function !(y) is the solution of the difference equation (2-5)

which corresponds to R1 (z), i.e. the one that can be expressed as:

V(y) = Av1 (y)+Bv2 (y)+Cv3 (y)+Dv4 (y) (2-209)

and which reduces for y:n+v+1 to "(n+v+1)-=-a, the coefficientsn
of Rl(z); vs(y), smi,2,3,4, in (2-209) are the previously found
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four independent particular solutions of (24,5)6

Comparison of ps(y), s±.Ool,2,3,4, as given by (-0)

(2-205), with (2-6)-(2-lO) shows that they Are identical with the

POWy of (2e-5).- That is, the corresponding to this ease difference,
equation (2-200) is an inhomogeneous difference equation whose

homogeneous part is identical with (2-5)i We are looking for the

special solution~ v,(y) of this equation, which satisfies the

vi(n+v+!.) = n bn+2v.i for all integers ft (~20

As before, only four of these conditions are sufficient, i.e.

f rot (2i-197):

V1 (v+l)=o , vi(v)=B. 1= bod2 v , jv-).movl

More generally we can use (2-210) for n, n+l, nt+2, n+3, where n
is Ay itege an BC n+2~ltthe coefficients appearing in the

definition (1-57) for R (z).
The general solution of the inhomogeneous difference equation

(2-200) consists of the general Solution of the homogeneous equa-

tion, i.e. of (2-5), plus a particular solution v 5(y) of the in-

homogeneous equation (17 Chapt. XII).- That is, we are going to
have:

1(y Evl(y)+-Fv 2(y)+GV3 (y)+Hv4 (y).v 5(y) = V(Y)+v 5(y),

where E, F, G, H are constants, which are going to be determined

so that the initial conditions (2-210) (just four of them) are

satisfied.

in order to obtain a particular solution v5 (y) of (2-200) we

consider the function %() As defined in (2-209). It satisfies

equation (2-5),9 i.e.
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P4 (y)"(y+4) +p3 (y) "(y+3)+p 2 (y) (y+2) +p (y) (y+l) po(y)) = 0.

Differentiating with respect to y and remembering from (2-206)-
(2,-208) that dp4(y) q(,y) ..... () . =-q_-%(

dy 2 dy q (y) dy 'to
dp-(y) dp (Y)

while ,.0, we obtain:

dia(y 4) ... a(y ..... d (y -2- d(y

d (y)(.+4 di(y)(y+)q()(l)qy~y2 . 222

After comparison with (2-200) this equation shows that a parti-
cular solution of (2-200) is.:

d_(y) dvi(y) dv2(y) dv3 (y) dv4(y)Vs-(Y) -A-- -- C+
5 dy dy dy dy dy ' -3

where A, B, C, D are the definite constants corresponding to the
first solution Rl(z) with r±v+l. A complete solution of (2-200)
has thus been found.

In order to obtain the asymptotic expansion of R2 (z) for
large I:z, we proceed as before, for R1 (z), making use of The oems
I and VI. From its definition in (1-57) R2 (z) can be written!

2vR (z)-(lnz) zV~l V(n~v !)zn +z v-_ bLD' z n+Z mv b "ozn.
n2-- n n

in the last summation put n-2v+l+mj then from (2-210): b2vi~m=
= vi(mev+!), so that for Iz<min(lal,!bI) we have:

i a

T() lb zn (lnZ) z (n+v+l) zn+z !  Vi (m+v+) zm=
n--o n--o mo
y2v z~~~ n

=z~ Tbzn+o(Inz) z '*  (nv+l) zn+zvl vr -n--o " " nzo -" n-io--
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zn1 [EV1 (n+v+l)+Pv 2(n~v.1)+Gv3 (n+v.1).Hv4(n+v+1z n

n&o

where the index n replaced m in the last stumation and use of

(21-211) was made. Thus we can Write:

7-(z±zVbnzn+,U- ( z)+u,(z) , IzI<Min( jal Ibi) (2-214)

wh ere:

ui(z)= (Thz)zv+ 1 (n+v+)zzV vnvlz1 (215

U2(z) V(n~v+1) if~z~ -Z- [v 1(n+v+1:)+FV 2(n+v+1)+

+Gv (n+v+l)+,HV4(n+v+l) ]z~ (2-216)

Take U2 (z) first. For large Izi its asymptotic expansion is

given as (2-87) shows for R1 (z) and for O~v+i. It was also shovn,

immediately after equation (2-114), that:

n--1 -- n=1

= R4 z).Thus, as in (2-87):

U WN -V~lcpV(-n+v+l) f0/
- z + He'~ R() W O<<r2 n--l zn

c~l V(-n+v+l) -r/
N vm. l + GeUC4R (Z) M-W*O

1~ 9- V(-n+v+l) -'fc/4[O
NJ~zv 2---- m5 *e-3(227

Next take u1(z).- it can be written as follows:

niz= ;ZO o (401zn ct& £rU 3( Z ) 1 -+l (2-218)
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where:

u3'(z,a) = == (n~ca)zn , Iz< .in(I a,,,fbI) .(2-219)

nao

In fact, performing the differentiation we have:
u1(z)=Eza'(in,.) C n )zn Zn] %-=_- +1-Crzn]=i

n=ono
-l()Z(n)7 ( 1 )) Z% z

n=o n 8o

But:
*a-7(n~)dq(ft+')-

d --+~ .).~w n(nrn+vl 5 & n+r n v+ v5 nel,

where use of the definition (2-213) was also made. Thus:

ui(z) = (inz)zv*lZ(n v+i)zn zvwl (nV+)zn
n=o n-o

in exact agreement with (2-215). The part ui(z) in R(Z), in the

form shown by (2-218), could be written down from the beginning,

if, in order to obtain the second solution R2 (Z) when 2v+l is an

integer, we had followed the general method of Frobenius, as

applied in this special case and explained in reference 9 (pp.

396-404).

The asymptotic expansion for large JzI of u3 (z,a), as given
in (2-219), can also be written down following (2-87), with

considered now as a variable parameter. Referring also to (2-209)

we have:

U3_ (z*)-zlw + Do R 4 (z) Q< ~rr
n. z

-cro n (-np.. • Ce"O/R (z) , -
n44 zn R3), T

- +&rC/4[Ccn(z)+DR(z)1 Q= .(-220)

nlz4



Here a is a variable parameter Varying aroun~d the root v+l of the
indicial equation about z=o- of equation (1- 1"-50). u3 (2, a),0 as
given in (2i-219), f or jz~min ( lajl , Ibi ), is a uniformly convergenit
series of anialytic functionts of a (VU(y) was proved to be analytic
for all y and z-' is an analytic functiont of a) and can, therefore,
be differentiated any number of times With respect to a (9 p.6
400). Then, for any ar, we let jzl-p.d and obtained the asymptotic
ex-pan's~is (i220o) f-6r u3 -(zv4Y). ftsev.that, the-depandence of ___

u3 (zia) on ar appears now (and for Z in! any sector) only in the

seie -2 Vj"~na/z (Y) is analytic for all y andZ"i

anAlytid for all a. For a~v+l we have: V("n+v+l) = ~~ 0 (nl2,
3,.*..). Then, with or varying in the vicinity of vi~l and f or

sufficiently large Izi va .(n~a)/zn is a uniformly convergett

series of analytic functions of a. Therefore, differentiation
with respect to a any nlumber of times is permissible, as before.
Thus we obtain:*

1 00 .(-60 v Ga O

nol n n1 -Wa ]n-6(

I r(4<r .(2-221)

Finally for a v+l:

vU o (n+v+l)

- (-n+a)

-n z (-(cr n - /2 ) m-IT

= v5(-n+e-v+l). Therefore:
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Substituting (2-217) and (2-2:22) in (2-214) we obtain:

-2V V(-n+V+1)
R2 (n v+1 ~Vb +

zkoeo n=o nn1Zf t1 zn

+!W* TRC4(Z) 0 O< r

nZon,1 n=i zn'

+Ge -vc/4 R3 (Z)

E. zV~' Znv+@ 1- i-v.1vYI 4-3z +
n n 5 =

+e ,/4t3 ( Z) +H 4 (z)] , *O

According to (2i-211) and (2-210): v5 (-n+v+i)+V(i-n+v+i)=:v,i(nv+l)=-

=b-n+2v+l Thuse the first three summations in the above expansions

can be combined As follows:

2q b_2yft__ 2v: bn2+
Z-, Zn v+~ 1 b*n+2v+l = v-nZl 2v+1

nizo n ZA~ n~o n W 1

since b= - b_2 .... 0. in the last summation change the Index

as follows: n 2v+l-.m. The expression becomes:

zV V nVb 4=O bin - y6 2v~ 0V bn

W-Mo mn-2v z- - n-o ~ n;;:V z

" V n y 2V zn = 1,im. i-t vanishes. Therefore:

n- - IbnZ.

R2(z) Irs.J A24 R4(z) 0 Q( TKr

VJA23 R, (z) -, / (

A% 23 1 z + A24 R4(z) # 4=0 (22)
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where:

A24 =He"c4 A8 Go~/ 224

The result is itn complete algreement with theory (9- PP. 168i--

174, 10 pp. 72-73) and analogous to the result for RW

Detemintioofth~oef&~ient oftheLineru~latons

,In order to evaluate G and H We follow a&method Similar to the

Wone Which led t- exRresion (2i-194) for D. Prom (2-111) and

(2-213) we have:

Vi~)~V(y)Viy)~ ()=Evl(Y)iPFv 2(,V)+Gv3(y)+HV4(). (2-25)

As in (2"188) we can then obtain!

H 1 v1 (y) v2(Y) v3 (y) vi.(Y+)-(Y)

3?(y v1 (Y+2) v2(Y+2) v3 (y+2) v i (Y+2)-"' I(Y+ 2)(226
vI(y+3) v2(Y+3) v3 (Y+3) vi(Y+3)-7I(Y+3)

The procedure that led Prom (2-188) to (2-194) shows that H can

be expressecod as follows:0

H =

Differentiate (2-194) with respect to y:

o I(y+2)P4 (Y-2)N4(y!-2)+I '(y+3)P 4(yL-1)N 4 (y-1)4m'(y+2) PO"-).

-[E-(y)+2av(y.1) J[dN4 (y)/dyJ-;(Y+1)(dN4 (y+1)/dyJ (2"228)
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Add (-2)and (2-22,8):

H i v(Y+2) P4(y-r2) N4 (y-2) +Evi(Y+3) P4 (y-1) A(Y+2) P3 (Y-1)JN4(-

(Y) +2ai(Y+1)dN 4(y)y-vi(Y+)dN4(y+)/dy] . (d29

Putting y = n+v+1, where nt any integer, and Observing thatt

vi(n+v+!) ± B n bn42v41  and V'-(n+v+1) =a-

we obtain:

H =Bn+2P4 (n+v~1)N 4 (n+v'c1)*I[n+ 3 P4 (n+v)+Bn,+2 3(n+V) JN4 (n~v)f-tBn.

]N(+vJ)2BaB(nv2 +an,+,[Pl(n+v"!)N (n+vi!) +

+P (n+V-1)N'(~v1 ]+an, [P'(n+v)N4 (v)pnvN(n~v)3+

+A n.2tCP(n.Iv)N4(n+v)+p3(n+v)N4'(n+v)]-Ca,+2a a,+1)N4 (n+v+1)-

n+ 111(n~v+2)

or:

H [n+2P4(fl+v-1)+an+2p'L(f+v-1)]N4(n+v-1)+E[gn+3P4(nv+n 2

p3 Cnv an 3 (n) a 2p(iv)](n)En+2a0nI]N (z+v+1) -

-B (n+v+)+ aI~2+v)(nP'v-1) ]N ( n-1)m p n-)+a[Bvj-n3 4 n--3- n n+ 234

n*N4(nv)E a n (n n+i.NAn+3P2)~ v + 2-230~)
N'(nv)"Ca 2a a ) ]N(n~v~1)-a(2-3)

Exactly the same expression gives G, If N 3(y) is suabstituted In
place of N 4(y)'

An expression for Nl(y), at least asymptotic for large Iyf
in the right half y-plane, can be obtained by direct differentia-



2-63tion of (2-l68).(2-:69) or (2,78)-(2-l7'9) (17 pp* 434-461 and
Pp. 457-459). We obtain, correspondingly:

Nl(y) = [C+Il/9+*,(Yv4)4(y(y) I'M + (i)-, r(y+v+4)r(y)-
43 2 r(y.v+3,,ic/2 )

' [ (yv3iic/2). dj, ( --..... c--/...y+v++ic-/2)

+ .... 
(.. .2-23_1)_. .....

(y+v+3;ic/2) (y+v+4ic/2)

(+i)Y -v (y+v+4) r(y+i3 _v)
N4¢y) = C]n2*(:+)"14.~)J~(r+ ~

4 
2 r(y+6;ic/g)

d + d( +7tic/2)

Y+61-c/2

4 * (y+8;ic/-)

(y+6+-ic/2) (y+7,6ic/2)

where *(z) =r(z) /r(z) (17 Pp. 241-267). *(z) satisfies the
relations:

*(z+l) -(z)+ " ( = Euler's constant (2-233)

It can be checked easily that for real a, b: G = H. We have
expressed H (G) In terms of N4 (y), N'(y) (N, N) only, Just as
D (0) was expressed in terms of N4 (y) (N3).

Concerning the computation of C, D, G, H through equations
(2-195) and (2-230) we observe that n can be given values large
enough so that the factorial series for N(y) and NO(y) are easily
and quickly computed. For such n, r(x) and *'(x) can be evaluated
with the use of their well-known asymptotic expansionst
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-1/21 1 571r(x) rN. ,- xz-1/2 (m2rr) i.- ... ...... i- 9'_ .... -

288x2  5184ox3  2488320x

- 5 . ... ] (2c-234)
20901888ox 75- 24679,6800x

,_61 1_ _
-X -491 - 10

+ 12 4 . (2-235)
3276x 12x

Even for x=2 the second series yields *(2) with aft accuracy of
6 de cimals, while the same is true for F(x) and x=3.

Notice, however, that n can not be given very large values
in (2-195), (2-230). Since an's and 1n'S (the coefficients of the
power series in x of Rl(x) and R2 (x) ) are involved in these rela-
tions and the accuracy of their evaluation diminishes as n increa-

ses, there is a limitation to the values of n that can be usedi
It was also observed that for large n, the summation of the terms
in the right half sides of (2-195) and (2-230) destroyed the
accuracy rapidly by eliminating the first significant decimals of

the individual terms. In each particular case there is an optimum
range of values of n for which (2-195) and (2-230), with a given

accuracy of computation, yield the most accurate results. To make
sure that the values of C, D, G, H are the correct ones, one
should use (2-195) and (2-230) for about 10 values of n and
compare how well the 10 values of these coefficients agree.

As an indication, we give a few results obtained, with
8-decimal accuracy machine computations, in Case I, Chapter 3,
PART I. In this case a-12, b=!0, C-D, G-H, R3(X) 4 (x). Besides
D and H , the values of R2 (x) for x=12 and x=!4 are given for the

first five functions: v-l,3,5,7,9, Rl(x) is not given, since it
is included in (1-80), defining R2(x). x-12 and x=14 fall in the

overlapping region between the convergent series (1-80) for R2( )



1

2-65
and the asyptotic series (2-223): R2 (x)=e /4CGR 3(4x)+IR(x)]

yielding values of RP(x) through G, H and the asymptotic series
(1-94) for R3 (x) and R4(x). Both values Of R2 (x) are $ien for
comparison.

v fl H

1 4.14617"14.06427 -252. 508-1265.563
3 -133.193+117.365 8986741i1U3064918
5 (1.24526-10.965800)'i0 (-0.875955-4.30989) i0

7 (-2.32660+11.5730) iO6 ( -2,.05026+13.83348) .106

9 (72577-44.2497).i08 (10.044-17.42212) i08

x R(x) from (1-80) Rx) from (2-2223)

12 38.0483 3861064
1 14 114.081 114.082

12 -327.000 -326.902
3 14 -40-.884 -401i.875

12 1.46444.10 1446278104

5 14 7.44758"10 7.44795.1O3

12 -. 95279" 06 "1.95571.106
7 14 -2.95473"105  -2.95481"105

12 4.80712108  4.80351.108
9 14 -3o75249.108 -3.7e5230q108

For x-14, failing roughly in the middle of the overlapping region

in this case, the agreement is good up to five significant

decimals.
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CHAPTE 3

RMcA1M AND GENRALIZAT ION

The analysis given in the Previous chapters led to the

complete solution of the problem for the special fortt: vx)= ____

of the stratification function. The complexity of the problem

depends exclusively on the f orm of T (x) , since it is this form

Which determines the number and nature of the s ingulari ties of the
radial equation (1 1-42). There are three other forms of V(x)

for which the method Used for CD(x)- x2a Can be readily applied.
x+b

They are given below, together With the differential equation

into which (1 1-42) reduces, respectively:t

x+b
2(a-b gxa) 2_~ i )R(x) =0 (0-1)

(X+a)(x+b) X~){-

(x)= IL put:.2 , C(z) -z+a

x *b I z~b

R"()C a- R'(z). + a -J R(z)= 0 (-)
2 (Z+a) (z+b) 4z(z+b) 4-z-

; put. Z__Z)
X2 +b- x2  zz+ , ()=E

RUN )t 2(a-b) (Z+a)2  -v(v~1)

2z (z~a)(z+-b) 4z(z+b)g 33

A-1l the above forms of T(x) represent stratifications similar to

T(,= x-aas shown in figure (i-il), PART I. The essential point
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is that the radial differential equation for TM waves Obtained in

all cases, has the same number and nature of singularities as

(I 1-50). More specifically, three regular singularities at the

finite x (or z) plane (one at x=O, or z=O) and an irregular

singularity of the first rank at oo . In the last two cases the

solutions around z=oo become subnormal in nature (9 pp. 417-428

168-171, 10 pp. 63-64), but the modifications required are

elementary. The corresponding difference equation (Ii 2-5) can

again be solved along identical lines. Ford's method can be

applied equally well to these cases to provide the precise

asymptotic expansions required ( 7 Chapt. VIII). In addition to

Ford's Theorems I and VI, used in the preceding analysis, we may

have, in the last two cases, to make use of a number of other

similar theorems contained in his book. In the last chapter,

reference 7, relative examples are included, showing that the

method applies without essential modifications. It must be pointed

out that the analysis presented in the previous chapters, has

modified and generalized Ford's method in two directions. it has

provided general expressions for the coefficients C, D and G, H

depending only on one solution of the adjoint difference equation

(ii 2-137). And, mainly, it has dealt successfully with the case

of integral values for the difference of exponents (ie. when

2v+l is equal to a positive inteder), almost always present,

directly or indirectly, in all physical problems. Both these

generalizations are applicable in the last two cases (3-2) and
(3-3).

The modification of Ford's method, to which we just referred,

consists of introducing, in place of x, the variable y=x+a and

treat the difference equations (II 2-5) and (II 2-137) in terms

of yo The parameter c is always present in Ford's work (called h)

and makes the extension of the analysis to integral values for

2v ! almost impossible. By introducing y we eliminate this para-

meter, without rendering the method inapplicable; at the same time
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we are able to extend it easily to the case when 2v+l takes on

integral valueS.

The question that finally arises is whether the analysis

developed in the preceding chapters can be applied succe:ssffully
to more general types of stratification; for instance, to T(x)

varying in a manner similar to figure (3,-1).

(x)

....... - - -- - 2 . . . . . .

r . ..... .. 21 -Z L -2 - W; -- - f _\ 22 K 2 X

Figure 3-1. More general forms for

Almost always, (except in trivial cases), the answer depends
on the nature and number of singularities that are introduced in
equation (I 1-42). The point is .llustrated by mentioning certain

cases where the method fails. If irregular singularities are
Introduced in the finite x (or z) plane, then, in spite of the

fact that power series solutions can still be found, Ford's
theory for obtaining their asymptot!€ expansions is no longer

applicable ( 7 Chapt, VIII), The difference equation (I 2-5) is
no longer normal and its solutions are of such complexity, that

no corresponding theorems (like I, VI, or the rest of Ford's

theorems) exist, which can be applied to these solutions to yield
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the asymptotic expansions or R1 (x), R2(x). A case like this
arises, if (x) [ "x n , n43 and this is the reason why it

was not included in the previous list (-3-i) to (3-3). it is

easily seen that x=-a and x±-b are irregular singular points of
(I li42).

Another case, where the method fails, arises, if the singu-

larity at x= o (or at least z-oo, if we must resort to the

change of variable x-x(z) ), has a rank higher than 1. Normal

asymptotic series for R3(x), R4 (x) can still be obtained, in

general, but Ford's theory again fails ( 7 pp. 339w34i), owing to

the complexity of the solutions of the difference equation or to

the impossibility of even solving it.

Another case arises, if the number of finite regular singu-

larities is large or infinite. ?or example, c?(x) l i+aebX,

(b>0); the coefficient c'(x)/9(x) of R'(x) in (I 1-42) becomes:

-b Xiab x - - and introduces an infinite number of regular

l+ae-: a+e
singularities, at the zeros of ebx+a, in the complex x-plane.

Furthermore, in this case, the irregular point x=oo can not be

assigned a finite rank.

In practice such cases can be treated either numerically or

by approximating the function c(X) by more simple functions. The

numerical results in Chapter 3, PART I, showed that this approxi-

mation is valid and permissible. For sharper variations of a more

complicated nature, one may divide the interval 0-x~oo into a

finite number of shorter intervals. The problem then is somewhat

similar to stratification by layers, requiring additional matching

processes at each spherical bounidary separating regions of

different functional representation for ()

If the stratification terminates at a finite distance x,

series solutions may be sufficient, as it has already been pointed

out; anyway, the problem can be classified as a special case of
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stratification by layers.

it must also be pointed but that there are problems where

only TE waves are invoived. The radial equation (I 1-43) for
these waves is more simple than equation (I 1-42) for TM waves.
in certain cases, the former equation can be solved, while the

latter can not. An example is mentioned in reference 2, but it

refers to a finite interval.

With these remarks in mind we can answer the question raised

(for problems requiring solution in the whole interval 0,x i.),

as follows: The preceding analysis can be applied to more general

stratification functions (x) as long as:

1) No finite irregular singularities are introduced in equation

(U lm42)o

2) The rank of the irregular singularity at x or z=w does not

become higher than 1; in general, this requirement is more

easily satisfied than the preceding One, since in all
physical problems, (x) must reduce to 1, or a finite

constant, at x or z=06.

3) The number of regular singular points introduced in the

finite x (or z) plane is reasonably small and permits the

use of a bilinear change of variable x (or Z) = R which

maps the interval of interest in the x-plane (in real cases

the real x-axis) into a finite circle around t=--/a in the

t-plane, placing all the other singularities of the equation

outside this circle. This last restriction is not as funda-

mental as the first two, but, from the computational point

of view, it marks the difference between the possibility of

an analytical or completely numerical solution to the

problem.



B IBLIOGRAPHY

1e Tai, C. T. The Electromagnietic theory of the Spherical
L. eberg Lens. Apple Scientific Research, Section D,

Vol. 7, 19,58, PP. 113-130.
2. Yeh Cavour and Kaprelian, 26 A. The Electromagnetic Theory

of a Radially Stratified Mediu-m. Univ. of Southern Cale
________________ Technical Report, E. E. Dept. Nov. 1,5, 19560.

3. lingi R6 W. P. and Harrison, C. Wi Half-Wave Cylindrical
Antenna in a Dissipative Medium:4 Current and itpedancei

journal of Rles. of the Nato Bureau of Standards-. Radio
Propagi Vol. 64Dj No. 4, JU1.-Augo 19,60, pp. 365m380.

4. King, Re We P. Electromagnetic Engineering. Me Graw-Hill

Book Co., Intc., New York, N. Y.# 1945. App. 2, pp. 510-518.
5. Kingo R. We P. The Theory of Linear Antennas. Harvard

Univ. Press, Cambridge, Mass., 195,6, Chapto VIMI, pp.

6. Scheikulnoff, S. A. Advanced Antenna Theory. J ohn W IlIey
and Sons, New York, N. Y., 1952.

7. Ford, We B. The Asymptotic Developments of Functions
Defined by Maclaurin Series. Chelsea Pubi. Co., New York,

N. Yoo 1960.
8. Ford, We B. Studies on Divergent Series and Summability

Chelsea P-u19 Co., New York, N. Y., 1.960.
9. Ince, E. L. Ordinary Differential Equations. Dover Pubi.,

Inc., New York, N. Y., 1956.

10# Erdhl, A. Asymptotic Expansionse Dover Publ., Inc.,

New York, N. Y., 1956.

11. Morse, P. M. and Feshbach, H., Methods of Theoretical Phy-

sics. Mc Graw-Hill Book Co., Inc., New York, N. Y.,

1953. Part I, Chapt. 5 and Appendix.

12. Tait C. T. On the Theory of Bloonical Anteznas. Journal



ii

of Appl. Phys., 19, 1948, pp. 1155- 1160.

13. Tat, C. T. Application of a Variational Principle to Bico-

nical Antennas. Journal of Appi. Phys., 20, 1949, pp.
1076-0184.

14. lizuka Keigo and King, Re W. P. At Experimental Study of

the Properties of Antennas Immersed in Conducting Media,

Scientific Report No. 2, Cruft Laboratory, Harvard Univer-

sity, December 15, 1961.
156 Papas, C. H. and King, R& W6 P. Input Impedance of Wide-

Angle Conical Antennas Fed by a Coaxial Line* Proc. of
the I. R. E., Vol. 37, No. 11, November 1949i pp. 1269-
1271.

16. Whittaker, E. T. and Watson. G. N. Modern Analysis.

Cambridge Univ. PreOs Cwnbridge, Amer. Edition, 1946.

17. Milne-Thomson, L. M, The Calculus of Finite Differences*

Macmillan and Co., Limited, London, 1951.

18. N6rlund, N.-E. Leqons sur ies Equations Lneairers aux

Differences Finies. Gauthier-Villars et Cie, Paris, 1999.

19. Norlund, N.-E. Leqons sur les Series d'interpolation.

Gauthier-Villars et Cie, Paris, 1926.

20e N~rlund, N.-E, Aota Nathmatica. Vol. 34, 1911a pp. 16-

19.



Aeit i t ssCa . t Ll r...Sliths
1 

4tfl Caat•e We n . I. the Sitiett h • b WtrLg AIlaa.It*l~ta*i ***p aeie.U ' Saenp -1 Peiieta* hi.p

u .hI s =a -. a. C m
'.5 t at A t

-~_I Pi) Peel A.,. eI.... W. M t.. . ele, MP
le tath S.. lash a-i. la teI~

AisekedrSit.. po.. a- s*•s* al .... • s. **..,

A r tr' l•1X mb', Wdl• pear Ca...,l N a 111rt Sl
I

A5CSltl IA itp .€eUI• STI U S ADI 1 I ~ *lA,-16 ;' ...... ... '

C...'-

A r...BI.. .. ,... A.?.. .... .... ..ate,_. pi.

P •I * .. ao1.. I.,itaI i..lai aI $i ath•udDajetta

APSIlslllA IIAC Wi.U ai.4. C-tI 6.t4• 4UI• I

lk+II ~ld+,
l

P~lkl ,U A# IIII"•.~

Slhtt laah.te AC.l. l WCU. L~tIt 45lll~ , I Cllr~~fm~ llte, a. Itatwias

eiBIi... I .i r. ti .ti P . t.A Ife a, Chl Iv Gtt..a Slllei

III~~6 c." -l ¢ lI l i-l
SOP _z=14. C3IIW

•.pltnIs U Di c.tt

IV, h i UIt
4

W .l Pith Us : :et .. a. .i ,i lii i l
P.i . I It D+ a . I. iC it.O A a.,

P . A. St.A. h.. ti Pa.t G. -tUliiy Pi-iii P- I-h

NIt.- .ta "t.... I ~ iigh _ .. ii- - ~ it as

OhitW..,A aa, a 5S...tai. l.h U. 1.5 i ti latt. V

laatI i 5. hip 545 S.aaiiir la.ip.it Iit Cettti; Aii
W.UP5I.Ca.,.t ii a ai ittttaa alat le e A, Ati tti

Jies, Cerii .Iti-A),.iCARI Csatlittll* . ,.Nl ,
+ ~ ~ ~ ~ 1 Ar. •D.t ofI..mlI*

C Adiq 0,h. Cts .- , it.*- tI i t i

A* . I.:;.",, I - .. 1. 'R.-m UIII III... I

rat i. 5IRW. .lM C ..ta.i .1 C tiihiii

L ... .i.... St .. t, i-.

lapit• -s 4, tia
1  

545 l tiai• A •.el sei I i .i l Uhi .I... I . I4..iehiseetiIaI C. Vii e. s, ctth.f i.... Msih..
let1. LDbti.

it..-.U Li Peat....e Id 4'. .i.. II

Ala-a Lii., ala+ aUiee tittb el itei¢e ptam mal. S asehit

laa+r* mbtllae~ll+i e i Cet+iet Sahti5 leatlt5lseaia
CU..5 A. lm.iaCh., atei AeteAI eail+eiUe it Pti Cahhiteii~ lll Cat.I.ii A stktls l

-.- ,- .. a. . Pie... .. If R -. C......
5U. itiAsi al-p i' C. IP it Cl i

la.4M.. .4t n..ti.l~t.e. Uie..tiies.-

Cidit
4  

l• aiet l 41hiliatl L¢htitr CambhIt41h* iii as, taII hsaeI Ctie tlllm l 
1

Gmml- "blcl

•l" M.*,+, cl-t** ¢,1, . - I,QI

A , i ai rlr paOe., C.I -t tIB -eI "et I i lt

DatMm + elietit l+FimX.k ba eiii~,lsp a.A Ci-.,Lhait
Caa~mle.aae 151atl eitl Otri4 i M Lmhateiat eaihee d C eilht l h+eaietPiieaae iiis

iW. - .I.. It sI t . .t. I... a...

Sass au .ph,,et... ......e.i....,

i. Uaiii..tiCahilits.dlilt Cs...... b4.1 iteeta ii *1
4

- iasat

seittis.miinI.e LePt. O . a ....... hseih a .tea, C ,tIotttia C *. t *.5

P M tetr t Alelaamti ib~l e mlNa1l-it~ C.ue Ldhtt.
e  

It Ci.mue C, s+i

Sit
I 

bl+M. etll Pheris hati.ll ar.. ia aiee lt. 4leitae lt.'
Pitd.0.a , It.it* S .. II Pti.. ih,, M. , S tailp. l ,

Cee.ip C. lrit SCCSrllC *ai,.t 4.haiiI. C Pit 0 itIteh I.

hatk l i.,. aaiilf Mei Cete. , It . leti ~"*([lc~ll Il~ll L iai..m lllkm

hi4a Eeeat4 ieataity at srl ns. t.5 Ctiaet**t

ll~~mIr•Ir• A III .

Alt , C h. a i e it... h. . . .....

UtttieA.Gatipla ilA i tt I.aea Caeled ilate tUe eh
l

te Pii.a, P. tall ..
U+tele+ *t.-h, Cee.htI C.,iieapIrU-epa lae.11 itieiti talaiep

tAe i, laei l.. Asiet Ptai... eeA Vea5,.i.

meets .aeeath L itilaty ...Aies; u i. alIahslsy At~t , e
P.S I hi . C Cas*a~sd+, Lei.Yolet lWealtll aieeeila

All' M.e ... . latei . 0,I- A.. ta

Ath~eiiie Pittidebla M ,k ats tLieteM~ l. .tatistltleA.eaSeit

C,-i0 Ag 0 Cashlite Ckmle a • tMeLmttesil

i~hatili, Pea~tla97 = RlaA .....haell I Ie et A . .....ptlat

l 5setTl thV... .... A a e e INe .....

Mi,.•e . t, e,.l Ao l altOAC l acCL

L.,~y btiti .r.yI* .r tatti Cattl.. iieiltA Ca.ia aelttll~ Pelliaeat II i ethat

D:., . -5.Di1ti aUa• a, , . e. .i •

i ~ lre l)[I e e tailsl +< ele l~l a lta
Ic  

*..liei. Meall

PA lipt. ~ lse . t ,..ttlaa, mttkLae.ewitih Lelh,,taietyl

tpattt~- ....a.t.ittt C. teleSt ai...a~e

;~~- =1 , C.o ",,,,

Cla. t Pl ., L * Ue l

CietlIttl ets ile itt-t l Attee e It tuisetIittit

Claittehit,~41 Pitti. Wt...Att .Pt

It. L IFe baI.Ciie le
liate e.- I51 .tsi Cell...

WiltC...~. it iitahea lht . ..it ..es .h. ..... . ..at ...ieit a. it-

-iei A I - 1 .atsi~ Se. ls e . l.t.i..

i+ laat i Pt.alttt
Se. itta e eiIIa ahthe eha tetlyiauia aea.at!ts~atl tt~eha A~ CIititCilePte
?iita.Sste iiltVllIa elI iptC Ce~

sa se eeeMalteel itlnaaiiaeIUtA4ii e~s. ets
V.h-hitee:tSsl eleilCI~tt Aei.I~la tLaeUett


